Thais Armangue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/570772/publications.pdf

Version: 2024-02-01

72 papers 9,483 citations

76326 40 h-index 71
g-index

73 all docs

73 docs citations

times ranked

73

6012 citing authors

#	Article	IF	CITATIONS
1	Therapeutic options for CTLA-4 insufficiency. Journal of Allergy and Clinical Immunology, 2022, 149, 736-746.	2.9	68
2	Efficacy of baricitinib on chronic pericardial effusion in a patient with Aicardi–Goutières syndrome. Rheumatology, 2022, 61, e87-e89.	1.9	4
3	Impact of COVID-19 in Immunosuppressed Children With Neuroimmunologic Disorders. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	6.0	8
4	The 2021 European Alliance of Associations for Rheumatology/American College of Rheumatology points to consider for diagnosis and management of autoinflammatory type I interferonopathies: CANDLE/PRAAS, SAVI and AGS. Annals of the Rheumatic Diseases, 2022, 81, 601-613.	0.9	31
5	Neurofilament Light Chain Levels in Anti-NMDAR Encephalitis and Primary Psychiatric Psychosis. Neurology, 2022, 98, .	1.1	25
6	The 2021 European Alliance of Associations for Rheumatology/American College of Rheumatology Points to Consider for Diagnosis and Management of Autoinflammatory Type I Interferonopathies: <scp>CANDLE</scp> / <scp>PRAAS</scp> , <scp>SAVI</scp> , and <scp>AGS</scp> . Arthritis and Rheumatology, 2022, 74, 735-751.	5.6	23
7	Rituximab as Second-Line Treatment in Anti-NMDAR Encephalitis after Herpes Simplex Encephalitis in Children. Indian Journal of Pediatrics, 2022, 89, 1031-1033.	0.8	1
8	Paediatric multiple sclerosis and antibody-associated demyelination: clinical, imaging, and biological considerations for diagnosis and care. Lancet Neurology, The, 2021, 20, 136-149.	10.2	60
9	Antibody-Mediated Encephalitis in Children: Focus on Diagnostic Clues and Acute Symptom Management. Seminars in Pediatric Neurology, 2021, 37, 100873.	2.0	3
10	Encephalitis with Autoantibodies against the Glutamate Kainate Receptors <scp>GluK2</scp> . Annals of Neurology, 2021, 90, 101-117.	5.3	26
11	International Consensus Recommendations for the Treatment of Pediatric NMDAR Antibody Encephalitis. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	70
12	Use and Safety of Immunotherapeutic Management of <i>N</i> -Methyl- <scp>d</scp> -Aspartate Receptor Antibody Encephalitis. JAMA Neurology, 2021, 78, 1333.	9.0	91
13	Absence of GluD2 Antibodies in Patients With Opsoclonus-Myoclonus Syndrome. Neurology, 2021, 96, e1082-e1087.	1.1	9
14	Using Acute Optic Neuritis Trials to Assess Neuroprotective and Remyelinating Therapies in Multiple Sclerosis. JAMA Neurology, 2020, 77, 234.	9.0	17
15	Hashimoto encephalopathy in the 21st century. Neurology, 2020, 94, e217-e224.	1.1	92
16	E.U. paediatric MOG consortium consensus: Part 5 – Treatment of paediatric myelin oligodendrocyte glycoprotein antibody-associated disorders. European Journal of Paediatric Neurology, 2020, 29, 41-53.	1.6	59
17	E.U. paediatric MOG consortium consensus: Part 4 – Outcome of paediatric myelin oligodendrocyte glycoprotein antibody-associated disorders. European Journal of Paediatric Neurology, 2020, 29, 32-40.	1.6	29
18	E.U. paediatric MOG consortium consensus: Part 1 – Classification of clinical phenotypes of paediatric myelin oligodendrocyte glycoprotein antibody-associated disorders. European Journal of Paediatric Neurology, 2020, 29, 2-13.	1.6	87

#	Article	IF	Citations
19	Treatment and outcome of aquaporin-4 antibody–positive NMOSD. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	6.0	37
20	Cerebrospinal fluid neopterin as a biomarker of neuroinflammatory diseases. Scientific Reports, 2020, 10, 18291.	3.3	30
21	Janus Kinase Inhibition in the Aicardi–Goutières Syndrome. New England Journal of Medicine, 2020, 383, 986-989.	27.0	109
22	E.U. paediatric MOG consortium consensus: Part 3 – Biomarkers of paediatric myelin oligodendrocyte glycoprotein antibody-associated disorders. European Journal of Paediatric Neurology, 2020, 29, 22-31.	1.6	24
23	Clinical significance of Kelch-like protein 11 antibodies. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	6.0	54
24	Clinical significance of anti-NMDAR concurrent with glial or neuronal surface antibodies. Neurology, 2020, 94, e2302-e2310.	1.1	94
25	Sleep disorders in anti-NMDAR encephalitis. Neurology, 2020, 95, e671-e684.	1.1	47
26	Associations of paediatric demyelinating and encephalitic syndromes with myelin oligodendrocyte glycoprotein antibodies: a multicentre observational study. Lancet Neurology, The, 2020, 19, 234-246.	10.2	207
27	Clinical features of seronegative, but CSF antibody-positive, anti-NMDA receptor encephalitis. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, e659.	6.0	30
28	Paraneoplastic cerebellar ataxia and antibodies to metabotropic glutamate receptor 2. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	6.0	39
29	An update on anti-NMDA receptor encephalitis for neurologists and psychiatrists: mechanisms and models. Lancet Neurology, The, 2019, 18, 1045-1057.	10.2	497
30	Evaluation of treatment response in adults with relapsing MOG-Ab-associated disease. Journal of Neuroinflammation, 2019, 16, 134.	7.2	115
31	Chronic inflammatory demyelinating polyneuropathy associated with contactin-1 antibodies in a child. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, .	6.0	13
32	Cerebrospinal Fluid Neopterin in Children With Enterovirus-Related Brainstem Encephalitis. Pediatric Neurology, 2019, 96, 70-73.	2.1	8
33	Late-onset neuromyelitis optica spectrum disorder. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, .	6.0	44
34	Toll-like receptor 3 deficiency in autoimmune encephalitis post–herpes simplex encephalitis. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, e611.	6.0	18
35	Mouse model of anti-NMDA receptor post–herpes simplex encephalitis. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, e529.	6.0	44
36	Usefulness of MOG-antibody titres at first episode to predict the future clinical course in adults. Journal of Neurology, 2019, 266, 806-815.	3.6	47

3

#	Article	IF	Citations
37	Frequency and relevance of IgM, and IgA antibodies against MOG in MOG-IgG-associated disease. Multiple Sclerosis and Related Disorders, 2019, 28, 230-234.	2.0	18
38	Anti-MOG encephalitis mimicking small vessel CNS vasculitis. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, e538.	6.0	60
39	Anti-NMDA receptor encephalitis and nonencephalitic HSV-1 infection. Neurology: Neuroimmunology and NeuroInflammation, 2018, 5, e458.	6.0	67
40	Encephalitis with mGluR5 antibodies. Neurology, 2018, 90, e1964-e1972.	1.1	139
41	Clinical and pathogenic significance of IgG, IgA, and IgM antibodies against the NMDA receptor. Neurology, 2018, 90, e1386-e1394.	1.1	120
42	Autoimmune Encephalitis in Children. Journal of Pediatric Neurology, 2018, 16, 192-201.	0.2	1
43	Frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: a prospective observational study and retrospective analysis. Lancet Neurology, The, 2018, 17, 760-772.	10.2	422
44	Epidemiology of NMOSD in Catalonia: Influence of the new 2015 criteria in incidence and prevalence estimates. Multiple Sclerosis Journal, 2018, 24, 1843-1851.	3.0	77
45	Investigations in GABA _A receptor antibody-associated encephalitis. Neurology, 2017, 88, 1012-1020.	1.1	257
46	Neonatal detection of Aicardi GoutiÃ"res Syndrome by increased C26:0 lysophosphatidylcholine and interferon signature on newborn screening blood spots. Molecular Genetics and Metabolism, 2017, 122, 134-139.	1,1	43
47	Alexander Disease. Journal of Child Neurology, 2017, 32, 184-187.	1.4	14
48	Neuromyelitis optica spectrum disorders. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e225.	6.0	134
49	Clinical spectrum associated with MOG autoimmunity in adults: significance of sharing rodent MOG epitopes. Journal of Neurology, 2016, 263, 1349-1360.	3.6	112
50	Human neurexin- $3\hat{l}\pm$ antibodies associate with encephalitis and alter synapse development. Neurology, 2016, 86, 2235-2242.	1.1	116
51	Anti-LGI1–associated cognitive impairment. Neurology, 2016, 87, 759-765.	1.1	264
52	Antibodies in acquired demyelinating disorders in children. Multiple Sclerosis and Demyelinating Disorders, 2016, 1, .	1.1	4
53	Myorhythmiaâ€Like Dyskinesia Affecting the Face and Ear Associated With Anti– <i>N</i> à€Methylâ€ <scp>d</scp> â€Aspartate Receptor Encephalitis. Movement Disorders Clinical Practice, 2016, 3, 425-426.	1.5	2
54	Clinical and Immunological Features of Opsoclonus-Myoclonus Syndrome in the Era of Neuronal Cell Surface Antibodies. JAMA Neurology, 2016, 73, 417.	9.0	152

#	Article	IF	CITATIONS
55	Investigations on CXCL13 in Anti– <i>N</i> -Methyl- <scp>D</scp> -Aspartate Receptor Encephalitis. JAMA Neurology, 2015, 72, 180.	9.0	142
56	Paraneoplastic Neurological Syndromes and Glutamic Acid Decarboxylase Antibodies. JAMA Neurology, 2015, 72, 874.	9.0	169
57	Autoimmune Encephalitis in Postpartum Psychosis. American Journal of Psychiatry, 2015, 172, 901-908.	7.2	88
58	Autoimmune post–herpes simplex encephalitis of adults and teenagers. Neurology, 2015, 85, 1736-1743.	1,1	226
59	When a serum test overrides the clinical assessment. Neurology, 2015, 84, 1379-1381.	1.1	32
60	Antibodies to MOG and AQP4 in adults with neuromyelitis optica and suspected limited forms of the disease. Multiple Sclerosis Journal, 2015, 21, 866-874.	3.0	241
61	Autoimmune encephalopathies. Annals of the New York Academy of Sciences, 2015, 1338, 94-114.	3.8	322
62	Autoimmune encephalitis as differential diagnosis of infectious encephalitis. Current Opinion in Neurology, 2014, 27, 361-368.	3.6	148
63	Encephalitis with refractory seizures, status epilepticus, and antibodies to the GABAA receptor: a case series, characterisation of the antigen, and analysis of the effects of antibodies. Lancet Neurology, The, 2014, 13, 276-286.	10.2	525
64	Herpes simplex virus encephalitis is a trigger of brain autoimmunity. Annals of Neurology, 2014, 75, 317-323.	5.3	372
65	A novel treatmentâ€responsive encephalitis with frequent opsoclonus and teratoma. Annals of Neurology, 2014, 75, 435-441.	5.3	51
66	Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurology, The, 2013, 12, 157-165.	10.2	2,382
67	Clinical Case of Anti-N-methyl-d-aspartate Receptor Encephalitis in an 8-Month-Old Patient With Hyperkinetic Movement Disorder. Pediatric Neurology, 2013, 48, 400-402.	2.1	11
68	Epileptic encephalopathy after HHV6 post-transplant acute limbic encephalitis in children: Confirmation of a new epilepsy syndrome. Epilepsy Research, 2013, 105, 419-422.	1.6	21
69	Pediatric Anti-N-methyl-D-Aspartate Receptor Encephalitis—Clinical Analysis and Novel Findings in a Series of 20 Patients. Journal of Pediatrics, 2013, 162, 850-856.e2.	1.8	362
70	Clinical Neuropathology practice guide 4-2013: post-herpes simplex encephalitis: N-methyl-Daspartate receptor antibodies are part of the problem., 2013, 32, 251-254.		42
71	Central Hypoventilation and Brainstem Dysgenesis. Pediatric Neurology, 2012, 46, 257-259.	2.1	9
72	Autoimmune Encephalitis in Children. Journal of Child Neurology, 2012, 27, 1460-1469.	1.4	178