Radha Dilip Banhatti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5707501/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	lonic conductivity of a fragile glass-forming molten salt: Modelling its dependence on frequency, temperature, and pressure. International Journal of Materials Research, 2022, 95, 921-927.	0.3	4
2	Structural characterization of an ionic liquid in bulk and in nano-confined environment using data from MD simulations. Data in Brief, 2020, 28, 104794.	1.0	3
3	Computational Study of Glycerol Binding within the Active Site of Coenzyme B ₁₂ -Dependent Diol Dehydratase. Journal of Physical Chemistry B, 2019, 123, 6178-6187.	2.6	6
4	The Influence of Chemical Change on Protein Dynamics: A Case Study with Pyruvate Formate‣yase. Chemistry - A European Journal, 2019, 25, 8653.	3.3	0
5	Exploring Reactive Conformations of Coenzyme A during Binding and Unbinding to Pyruvate Formate–Lyase. Journal of Physical Chemistry A, 2019, 123, 9345-9356.	2.5	4
6	Insights from molecular dynamics simulations on structural organization and diffusive dynamics of an ionic liquid at solid and vacuum interfaces. Journal of Colloid and Interface Science, 2019, 553, 350-363.	9.4	23
7	lon Transport in Glass-Forming Calcium Potassium Nitrate: From Complex Behaviours to Unexpected Simplicities. , 2019, 22, 140-159.		0
8	Scaling features of conductivity spectra reveal complexities in ionic, polaronic and mixed ionic-polaronic conduction in phosphate glasses. Acta Materialia, 2019, 175, 46-54.	7.9	18
9	The Influence of Chemical Change on Protein Dynamics: A Case Study with Pyruvate Formateâ€Lyase. Chemistry - A European Journal, 2019, 25, 8741-8753.	3.3	3
10	Polaronic transport in iron phosphate glasses containing HfO ₂ and CeO ₂ . Physical Chemistry Chemical Physics, 2017, 19, 3999-4009.	2.8	20
11	Insights from Local Network Structures and Localized Diffusion on the Ease of Lithium Ion Transport in Two Mixed Glass-Former Systems. Journal of Physical Chemistry C, 2017, 121, 17641-17657.	3.1	18
12	Low-temperature α-Agl confined in glass: Structure and dynamics. Solid State Ionics, 2015, 271, 2-9.	2.7	20
13	Toward understanding the second universality—A journey inspired by Arthur Stanley Nowick. Journal of Electroceramics, 2015, 34, 4-14.	2.0	10
14	Nearly constant loss effect in sodium borate and silver meta-phosphate glasses: New insights. Solid State Ionics, 2011, 192, 70-75.	2.7	25
15	First and Second Universalities: Expeditions Towards and Beyond. Zeitschrift Fur Physikalische Chemie, 2010, 224, 1891-1950.	2.8	35
16	New nearly constant loss feature detected in glass at low temperatures. Physical Chemistry Chemical Physics, 2010, 12, 14102.	2.8	30
17	The cationic energy landscape in alkali silicate glasses: Properties and relevance. Journal of Chemical Physics, 2009, 131, 224708.	3.0	5
18	Insights into Ion-Network Interactions and Ion Transport in Glass. Zeitschrift Fur Physikalische Chemie. 2009. 223. 1201-1215.	2.8	19

RADHA DILIP BANHATTI

#	Article	IF	CITATIONS
19	Synthesis and Modeling of Polysiloxane-Based Salt-in-Polymer Electrolytes with Various Additives. Journal of Physical Chemistry B, 2009, 113, 15473-15484.	2.6	39
20	Nearly constant loss effects in borate glasses. Physical Chemistry Chemical Physics, 2009, 11, 3158.	2.8	31
21	Frequency-dependent fluidity and conductivity of an ionic liquid. Physical Chemistry Chemical Physics, 2009, 11, 5930.	2.8	44
22	Broadband Conductivities and Fluidities of Fragile Ionic Liquids. Electrochemistry, 2009, 77, 573-581.	1.4	4
23	A Schematic Model for Multi-particle Dynamics in Ion Transport: From Mean Field to Non-mean Field Effects. Zeitschrift Fur Physikalische Chemie, 2009, 223, 1259-1272.	2.8	0
24	Using pressure, temperature and frequency as variables to study the dynamics of mobile ions in materials with disordered structures. European Physical Journal: Special Topics, 2008, 161, 65-78.	2.6	13
25	Translational and localised ionic motion in materials with disordered structures. Solid State Sciences, 2008, 10, 790-803.	3.2	26
26	Coupling model and MIGRATION concept – Equivalence and mutual mapping. Journal of Non-Crystalline Solids, 2007, 353, 3845-3852.	3.1	20
27	Conductivity dispersion in supercooled calcium potassium nitrate: caged ionic motion viewed as part of standard behaviour. Physical Chemistry Chemical Physics, 2007, 9, 5582.	2.8	26
28	Ionic transport and localized ionic motion in Na-β′′-alumina, Na1.70Li0.32Al10.66O17. Journal of Materials Science, 2007, 42, 1942-1947.	3.7	8
29	Low-Temperature Phases of Rubidium Silver Iodide:  Crystal Structures and Dynamics of the Mobile Silver Ions. Journal of Physical Chemistry A, 2006, 110, 3010-3016.	2.5	36
30	Ionic motion in materials with disordered structures. Solid State Ionics, 2006, 177, 1551-1557.	2.7	87
31	Conductivity spectra and ion dynamics of a salt-in-polymer electrolyte. Solid State Ionics, 2006, 177, 3135-3139.	2.7	36
32	Conductivity spectroscopy covering 17 decades on the frequency scale. Solid State Ionics, 2005, 176, 1971-1978.	2.7	24
33	Non-Arrhenius viscosity related to short-time ion dynamics in a fragile molten salt. Physical Chemistry Chemical Physics, 2005, 7, 1096.	2.8	21
34	Correlated ionic hopping processes in crystalline and glassy electrolytes resulting in MIGRATION-type and nearly-constant-loss-type conductivities. Physical Chemistry Chemical Physics, 2005, 7, 157.	2.8	45
35	Modelling frequency-dependent conductivities and permittivities in the framework of the MIGRATION concept. Solid State Ionics, 2004, 169, 1-8.	2.7	68
36	Dielectric function and localized diffusion in ion conducting glasses. Solid State Ionics, 2004, 175, 661-663.	2.7	20

RADHA DILIP BANHATTI

#	Article	IF	CITATIONS
37	Nearly constant loss behavior in �?-RbAg4I5: microwave conductivity plateau identified. Solid State Ionics, 2004, 175, 819-822.	2.7	9
38	A Mechanistic Approach to Conductivity Relaxation in Ionic Glasses. Zeitschrift Fur Physikalische Chemie, 2004, 218, 1401-1412.	2.8	9
39	From Ostwald′s Times to Solid State Ionics: Migration and Localised Hopping of Silver Ions in Crystalline Rubidium Silver Iodide. Zeitschrift Fur Physikalische Chemie, 2003, 217, 1245-1264.	2.8	15
40	Backward correlations and dynamic heterogeneities: A computer study of ion dynamics. Physical Review B, 2002, 66, .	3.2	17
41	Ionic motion in materials with disordered structures: conductivity spectra and the concept of mismatch and relaxation. Physical Chemistry Chemical Physics, 2002, 4, 3155-3167.	2.8	110
42	Characterization of the complex ion dynamics in lithium silicate glasses via computer simulations. Physical Chemistry Chemical Physics, 2002, 4, 3185-3192.	2.8	60
43	Dynamics of mobile ions in crystals, glasses and melts, described by the concept of mismatch and relaxation. Solid State Ionics, 2002, 154-155, 65-74.	2.7	16
44	Structure and dynamics of lithium silicate melts: molecular dynamics simulations. Physical Chemistry Chemical Physics, 2001, 3, 5104-5108.	2.8	40
45	Anion Rotation and Cation Transport in the Rotor Phase α -Sodium Orthophosphate: Paddle-Wheel Mechanism Redefined in View of New Experimental Results. Zeitschrift Fur Physikalische Chemie, 2000, 214, .	2.8	40
46	Anion reorientation in an ion conducting plastic crystal – coherent quasielastic neutron scattering from sodium ortho-phosphate. Physica B: Condensed Matter, 1999, 266, 60-68.	2.7	68
47	Defect models in silver halides. Bulletin of Materials Science, 1997, 20, 435-440.	1.7	3
48	Majority and minority intrinsic defects in lithium and sodium halides. Bulletin of Materials Science, 1997, 20, 451-454.	1.7	1
49	Anion reorientation in Na3PO4. Physica B: Condensed Matter, 1997, 241-243, 338-340.	2.7	11
50	Point defect modelling and transport processes in AgBr. Radiation Effects and Defects in Solids, 1995, 134, 157-159.	1.2	2
51	Role of induced quadrupoles in the simulation of intrinsic point defects in AgCl and NaCl. Physical Review B, 1993, 48, 6839-6853.	3.2	5
52	A theoretical calculation on Schottky defects in AgCl. Physica Status Solidi (B): Basic Research, 1991, 164, 357-367.	1.5	5
53	An Extended Polarizable Point Ion Model for Schottky Defects. Physica Status Solidi (B): Basic Research, 1991, 166, 15-23.	1.5	1