Ken Sakata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5707493/publications.pdf

Version: 2024-02-01

257450 189892 2,617 61 24 50 citations h-index g-index papers 82 82 82 2428 all docs docs citations times ranked citing authors

#	Article	lF	CITATIONS
1	Quantum Chemical Studies of Lewis-Acid Catalyzed Organic Chemical Reactions. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2022, 80, 115-125.	0.1	O
2	Rutheniumâ€Catalyzed Enantioselective Propargylic Phosphinylation of Propargylic Alcohols with Phosphine Oxides. Angewandte Chemie - International Edition, 2021, 60, 11231-11236.	13.8	32
3	Rutheniumâ€Catalyzed Enantioselective Propargylic Phosphinylation of Propargylic Alcohols with Phosphine Oxides. Angewandte Chemie, 2021, 133, 11331-11336.	2.0	7
4	Manganeseâ€Catalyzed Ammonia Oxidation into Dinitrogen under Chemical or Electrochemical Conditions**. ChemPlusChem, 2021, 86, 1511-1516.	2.8	21
5	Enantioselectivity in Ruthenium atalyzed Propargylic Substitution Reactions of Propargylic Alcohols with Acetone: A DFT Study. Chemistry - an Asian Journal, 2021, 16, 3760-3766.	3.3	5
6	Ruthenium―and Copper atalyzed Propargylic Substitution Reactions of Propargylic Alcohol Derivatives with Hydrazones. Chemistry - A European Journal, 2021, 27, 15650-15659.	3.3	4
7	Ruthenium―and Copper atalyzed Propargylic Substitution Reactions of Propargylic Alcohol Derivatives with Hydrazones. Chemistry - A European Journal, 2021, 27, 15562.	3.3	0
8	Regioselectivity in the Iridium-Catalyzed $[2 + 2 + 2]$ Cycloaddition of Unsymmetrical $\langle i \rangle \hat{1} \pm, i \rangle \langle i \rangle$ with Nitrile: A DFT Study. Organometallics, 2020, 39, 2091-2101.	2.3	7
9	Ruthenium-Catalyzed Propargylic Reduction of Propargylic Alcohols with Hantzsch Ester. Organometallics, 2020, 39, 2130-2134.	2.3	12
10	Roles of Lewis Acid Catalysts in Dielsâ€Alder Reactions between Cyclopentadiene and Methyl Acrylate. ChemistryOpen, 2020, 9, 662-666.	1.9	7
11	Ruthenium-catalysed oxidative conversion of ammonia into dinitrogen. Nature Chemistry, 2019, 11 , 702-709.	13.6	75
12	Total Synthesis of (â^')-Graminin A Based on Asymmetric Cyclization Carbonylation of Propargyl Acetate. Journal of Organic Chemistry, 2019, 84, 16268-16277.	3.2	6
13	Copperâ€Catalyzed [3+2] Cycloaddition Reactions of Isocyanoacetates with Phosphaalkynes to Prepare 1,3â€Azaphospholes. Angewandte Chemie, 2019, 131, 1180-1185.	2.0	3
14	Copperâ€Catalyzed [3+2] Cycloaddition Reactions of Isocyanoacetates with Phosphaalkynes to Prepare 1,3â€Azaphospholes. Angewandte Chemie - International Edition, 2019, 58, 1168-1173.	13.8	16
15	Mechanism and reactivity of catalytic propargylic substitution reactions ⟨i⟩via⟨ i⟩ metal–allenylidene intermediates: a theoretical perspective. Catalysis Science and Technology, 2018, 8, 12-25.	4.1	99
16	Force constant decomposition for pentaâ€coordinated XH ₃ Cl ₂ ^{â€} (X = C, Si, Ge) structures. Journal of Computational Chemistry, 2018, 39, 1544-1550.	3.3	1
17	UVA- and Visible-Light-Mediated Generation of Carbon Radicals from Organochlorides Using Nonmetal Photocatalyst. Journal of Organic Chemistry, 2018, 83, 9381-9390.	3.2	57
18	Stereoselective Synthesis of Tetrasubstituted Alkenes via a Cp*Co ^{III} atalyzed CⰒH Alkenylation/Directing Group Migration Sequence. Angewandte Chemie - International Edition, 2017, 56, 7156-7160.	13.8	98

#	Article	IF	CITATIONS
19	Stereoselective Synthesis of Tetrasubstituted Alkenes via a Cp*Co III â€Catalyzed Câ^'H Alkenylation/Directing Group Migration Sequence. Angewandte Chemie, 2017, 129, 7262-7266.	2.0	26
20	Origin of High Regio-, Diastereo-, and Enantioselectivities in 1,6-Addition of Azlactones to Dienyl <i>N</i> -Acylpyrroles: A Computational Study. Journal of Organic Chemistry, 2017, 82, 541-548.	3.2	18
21	Dicationic Thiolate-Bridged Diruthenium Complexes for Catalytic Oxidation of Molecular Dihydrogen. Organometallics, 2017, 36, 4499-4506.	2.3	6
22	Cp*Co ^{III} -Catalyzed C–H Alkenylation/Annulation Reactions of Indoles with Alkynes: A DFT Study. Journal of Organic Chemistry, 2017, 82, 7379-7387.	3.2	35
23	Catalytic Activity of Thiolateâ€Bridged Diruthenium Complexes Bearing Pendent Ether Moieties in the Oxidation of Molecular Dihydrogen. Chemistry - A European Journal, 2017, 23, 1007-1012.	3.3	6
24	Visibleâ€Lightâ€Mediated Aromatic Substitution Reactions of Cyanoarenes with 4â€Alkylâ€1,4â€dihydropyridines through Double Carbon–Carbon Bond Cleavage. ChemCatChem, 2016, 8, 1015-1015.	3.7	O
25	Origin of the <i>endo</i> Selectivity in the Diels–Alder Reaction between Cyclopentadiene and Maleic Anhydride. European Journal of Organic Chemistry, 2016, 2016, 4275-4278.	2.4	14
26	Visibleâ€Lightâ€Mediated Aromatic Substitution Reactions of Cyanoarenes with 4â€Alkylâ€1,4â€dihydropyridines through Double Carbon–Carbon Bond Cleavage. ChemCatChem, 2016, 8, 1028-1032.	3.7	109
27	Synthesis of Phosphabenzenes by an Iron atalyzed [2+2+2] Cycloaddition Reaction of Diynes with Phosphaalkynes. Angewandte Chemie - International Edition, 2015, 54, 7597-7601.	13.8	32
28	Iridiumâ€Catalyzed [2+2+2] Cycloaddition of α,ï‰â€Diynes with Cyanamides. Advanced Synthesis and Catalysis, 2015, 357, 3901-3916.	4.3	35
29	Dehydrative Direct CH Allylation with Allylic Alcohols under [Cp*Co ^{III}] Catalysis. Angewandte Chemie - International Edition, 2015, 54, 9944-9947.	13.8	273
30	Thiolate-Bridged Dinuclear Ruthenium and Iron Complexes as Robust and Efficient Catalysts toward Oxidation of Molecular Dihydrogen in Protic Solvents. Journal of the American Chemical Society, 2015, 137, 4173-4182.	13.7	19
31	Quantum Chemical Study of the Reaction of 3-(Trimethylsilyl)cyclohexa-1,4-dienes with B(C ₆ F ₅) ₃ . Organometallics, 2015, 34, 236-241.	2.3	22
32	Pyrroloindolone Synthesis via a Cp*Co ^{III} -Catalyzed Redox-Neutral Directed C–H Alkenylation/Annulation Sequence. Journal of the American Chemical Society, 2014, 136, 5424-5431.	13.7	441
33	Synthesis and Characterization of Binary-Complex Models of Ureas and 1,3-Dicarbonyl Compounds: Deeper Insights into Reaction Mechanisms Using Snap-Shot Structural Analysis. Journal of Organic Chemistry, 2014, 79, 1805-1817.	3.2	36
34	Rutheniumâ€Triggered Ring Opening of Ethynylcyclopropanes: [3+2] Cycloaddition with Aldehydes and Aldimines Involving Metal Allenylidene Intermediates. Angewandte Chemie - International Edition, 2013, 52, 1758-1762.	13.8	69
35	Quantum Chemical Study of Diels–Alder Reactions Catalyzed by Lewis Acid Activated Oxazaborolidines. Journal of Organic Chemistry, 2013, 78, 3095-3103.	3.2	24
36	Quantum Chemical Study of B(C ₆ F ₅) ₃ -Catalyzed Hydrosilylation of Carbonyl Group. Journal of Organic Chemistry, 2013, 78, 12505-12512.	3.2	135

#	Article	IF	CITATIONS
37	Iridium-Catalyzed $[2+2+2]$ Cycloaddition of $\hat{l}\pm, \hat{l}\%$ -Diynes with Nitriles. Journal of the American Chemical Society, 2012, 134, 10515-10531.	13.7	120
38	Quantum-Chemical Study of Neutral Lewis Base Catalyzed Allylation of Aldehydes with Allyltrichlorosilanes. Organometallics, 2010, 29, 1004-1011.	2.3	16
39	Copper-Catalyzed Enantioselective Propargylic Amination of Propargylic Esters with Amines: Copperâ°Allenylidene Complexes as Key Intermediates. Journal of the American Chemical Society, 2010, 132, 10592-10608.	13.7	198
40	A DFT Study on the Reaction Pathways for CarbonCarbon Bondâ€Forming Reactions between Propargylic Alcohols and Alkenes or Ketones Catalyzed by Thiolateâ€Bridged Diruthenium Complexes. Chemistry - an Asian Journal, 2009, 4, 81-88.	3.3	34
41	Ruthenium-Catalyzed Dienyne Formation from Propargylic Alcohols and 1,3-Conjugated Dienes. Organometallics, 2008, 27, 2046-2051.	2.3	40
42	Quantum Chemical Study of Lewis Acid Catalyzed Allylboration of Aldehydes. Journal of the American Chemical Society, 2008, 130, 12519-12526.	13.7	53
43	Ruthenium-Catalyzed Reactions of 1-Cyclopropyl-2-propyn-1-ols with Anilines and Water via Allenylidene Intermediates:Â Selective Preparation of Tri- and Tetrasubstituted Conjugated Enynes. Journal of the American Chemical Society, 2007, 129, 5175-5179.	13.7	70
44	Ab initio study of molecular structures and excited states in anthocyanidins. Tetrahedron, 2006, 62, 3721-3731.	1.9	66
45	An attempt to decompose the force constants for some diatomic molecules by the derivatives of the electronic kinetic energy. Theoretical Chemistry Accounts, 2006, 115, 276-280.	1.4	1
46	Quantum chemical study of the torsional motions for 9-vinylanthracene. Chemical Physics, 2005, 312, 69-80.	1.9	2
47	Studies toward the Synthesis of Furanocembrane Bipinnatin J: Synthesis of a 2,3,5-Trisubstituted Furfuryl Ether Intermediate. Heterocycles, 2005, 65, 531.	0.7	15
48	Ab initio study of the torsional potential for 9-phenylanthracene in the ground and excited states. Chemical Physics Letters, 2003, 371, 164-171.	2.6	17
49	Aromaticity/antiaromaticity in cyclic conjugated hydrocarbons. International Journal of Quantum Chemistry, 2002, 87, 135-144.	2.0	4
50	Ab initio calculation of the torsional potential for 2-alkenylanthracene in the ground and excited states. Chemical Physics Letters, 2001, 344, 185-192.	2.6	6
51	Quantum-chemical study on the reaction between GeF4 and Si2H6. Chemical Physics Letters, 2000, 320, 527-534.	2.6	8
52	Theoretical study of penetration reaction of fluorine atoms and ions into hydrogen-terminated Si(111) thin film. Thin Solid Films, 2000, 374, 143-149.	1.8	5
53	Quantum chemical mechanism of oxidation of the hydrogen-terminated Si surface by oxygen anion. Applied Surface Science, 2000, 159-160, 392-397.	6.1	5
54	Electron Reorganization along the Intrinsic Reaction Coordinate in 1,3-Dipolar Cycloaddition. Journal of Physical Chemistry A, 2000, 104, 10001-10008.	2.5	18

#	Article	IF	CITATION
55	Application of the regional density functional theory: The chemical potential inequality in the HeH+ System. International Journal of Quantum Chemistry, 1999, 74, 669-679.	2.0	27
56	Quantum Chemical Study on the Oxidation of Hydrogen-Terminated Silicon Surface by Oxygen Anions. Japanese Journal of Applied Physics, 1998, 37, 4493-4504.	1.5	7
57	Quantum Chemical Study of the Oxidation Sites in Hydrogen- and Water-Terminated Si Dimers: Attempt to Understand the Si–Si Back-Bond Oxidation on the Si Surface. Japanese Journal of Applied Physics, 1998, 37, 4962-4973.	1.5	9
58	Quantum chemical study on p-doping effect of F-terminated silicon surface reaction with silane. Applied Surface Science, 1997, 117-118, 54-60.	6.1	1
59	Quantum chemical study on low energy reaction path for. Applied Surface Science, 1997, 117-118, 151-157.	6.1	11
60	Quantum chemical study on aluminum selective CVD reaction mechanism. Applied Surface Science, 1997, 117-118, 465-471.	6.1	7
61	Transient bonds and chemical reactivity of molecules. International Journal of Quantum Chemistry, 1996, 60, 401-408.	2.0	11