Nora Schopp

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5707469/nora-schopp-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

16
papers381
citations9
h-index18
g-index18
ext. papers539
ext. citations14.2
avg, IF3.86
L-index

#	Paper	IF	Citations
16	Resolving Atomic-Scale Interactions in Non-Fullerene Acceptor Organic Solar Cells with Solid-State NMR Spectroscopy, Crystallographic Modelling, and Molecular Dynamics Simulations. <i>Advanced Materials</i> , 2021 , e2105943	24	11
15	Optical Expediency of Back Electrode Materials for Organic Near-Infrared Photodiodes. <i>ACS Applied Materials & ACS Applied & ACS Appli</i>	9.5	4
14	Insights into Bulk-Heterojunction Organic Solar Cells Processed from Green Solvent. <i>Solar Rrl</i> , 2021 , 5, 2100213	7.1	11
13	On Optoelectronic Processes in Organic Solar Cells: From Opaque to Transparent. <i>Advanced Optical Materials</i> , 2021 , 9, 2001484	8.1	5
12	A Simple Approach for Unraveling Optoelectronic Processes in Organic Solar Cells under Short-Circuit Conditions. <i>Advanced Energy Materials</i> , 2021 , 11, 2002760	21.8	14
11	Temperature and Light Modulated Open-Circuit Voltage in Nonfullerene Organic Solar Cells with Different Effective Bandgaps. <i>Advanced Energy Materials</i> , 2021 , 11, 2003091	21.8	8
10	Effect of Palladium-Tetrakis(Triphenylphosphine) Catalyst Traces on Charge Recombination and Extraction in Non-Fullerene-based Organic Solar Cells. <i>Advanced Functional Materials</i> , 2021 , 31, 200936	53 ^{15.6}	10
9	Unifying Charge Generation, Recombination, and Extraction in Low-Offset Non-Fullerene Acceptor Organic Solar Cells. <i>Advanced Energy Materials</i> , 2020 , 10, 2001203	21.8	46
8	Transient grating spectroscopy of photocarrier dynamics in semiconducting polymer thin films. <i>Applied Physics Letters</i> , 2020 , 117, 253302	3.4	2
7	Coupling between structural properties and charge transport in nano-crystalline and amorphous graphitic carbon films, deposited by electron-beam evaporation. <i>Nanotechnology</i> , 2020 , 31, 505706	3.4	6
6	The role of bulk and interfacial morphology in charge generation, recombination, and extraction in non-fullerene acceptor organic solar cells. <i>Energy and Environmental Science</i> , 2020 , 13, 3679-3692	35.4	68
5	Understanding the High Performance of over 15% Efficiency in Single-Junction Bulk Heterojunction Organic Solar Cells. <i>Advanced Materials</i> , 2019 , 31, e1903868	24	149
4	A Pinch of Salt Improves n-Butanol Selectivity in the Guerbet Condensation of Ethanol over Cu-Doped Mg/Al Oxides. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 15119-15126	8.3	13
3	A Comprehensive Study of Copper Guanidine Quinoline Complexes: Predicting the Activity of Catalysts in ATRP with DFT. <i>Chemistry - A European Journal</i> , 2016 , 22, 13550-62	4.8	24
2	Visible to Near-Infrared Photodiodes with Advanced Radiation Resistance. <i>Advanced Theory and Simulations</i> ,2100436	3.5	3
1	Understanding Interfacial Recombination Processes in Narrow-Band-Gap Organic Solar Cells. <i>ACS Energy Letters</i> ,1626-1634	20.1	2