
Temuulen Ts Sankey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5707388/publications.pdf Version: 2024-02-01

TEMILLEN TS SANKEY

#	Article	IF	CITATIONS
1	Soil moisture response to seasonal drought conditions and postâ€ŧhinning forest structure. Ecohydrology, 2022, 15, .	2.4	12
2	Thinning increases forest resiliency during unprecedented drought. Scientific Reports, 2022, 12, .	3.3	15
3	Regionalâ€scale forest restoration effects on ecosystem resiliency to drought: a synthesis of vegetation and moisture trends on Google Earth Engine. Remote Sensing in Ecology and Conservation, 2021, 7, 259-274.	4.3	16
4	Quantifying plant-soil-nutrient dynamics in rangelands: Fusion of UAV hyperspectral-LiDAR, UAV multispectral-photogrammetry, and ground-based LiDAR-digital photography in a shrub-encroached desert grassland. Remote Sensing of Environment, 2021, 253, 112223.	11.0	62
5	UAV thermal image detects genetic trait differences among populations and genotypes of Fremont cottonwood (Populus fremontii , Salicaceae). Remote Sensing in Ecology and Conservation, 2021, 7, 245-258.	4.3	5
6	Monitoring Tamarix Changes Using WorldView-2 Satellite Imagery in Grand Canyon National Park, Arizona. Remote Sensing, 2021, 13, 958.	4.0	2
7	UAV-Based Estimate of Snow Cover Dynamics: Optimizing Semi-Arid Forest Structure for Snow Persistence. Remote Sensing, 2021, 13, 1036.	4.0	10
8	Hydrologic and geomorphic effects on riparian plant species occurrence and encroachment: Remote sensing of 360 km of the Colorado River in Grand Canyon. Ecohydrology, 2021, 14, e2344.	2.4	8
9	Integrating airborne and mobile lidar data with UAV photogrammetry for rapid assessment of changing forest snow depth and cover. Science of Remote Sensing, 2021, 4, 100029.	4.8	10
10	Carbon and ecohydrological priorities in managing woody encroachment: UAV perspective 63 years after a control treatment. Environmental Research Letters, 2021, 16, 124053.	5.2	3
11	Vegetation structure controls on snow and soil moisture in restored ponderosa pine forests. Hydrological Processes, 2021, 35, e14432.	2.6	6
12	Adaptive capacity in the foundation tree species Populus fremontii: implications for resilience to climate change and non-native species invasion in the American Southwest. , 2020, 8, coaa061.		20
13	<scp>UAV</scp> â€derived estimates of forest structure to inform ponderosa pine forest restoration. Remote Sensing in Ecology and Conservation, 2020, 6, 181-197.	4.3	36
14	Invasive buffelgrass detection using highâ€resolution satellite and <scp>UAV</scp> imagery on Google Earth Engine. Remote Sensing in Ecology and Conservation, 2019, 5, 318-331.	4.3	38
15	Unmanned Aerial Vehicle â^' Based Rangeland Monitoring: Examining a Century of Vegetation Changes. Rangeland Ecology and Management, 2019, 72, 858-863.	2.3	24
16	Remote sensing of tamarisk beetle (Diorhabda carinulata) impacts along 412†km of the Colorado River in the Grand Canyon, Arizona, USA. Ecological Indicators, 2018, 89, 365-375.	6.3	12
17	<scp>UAV</scp> hyperspectral and lidar data and their fusion for arid and semiâ€arid land vegetation monitoring. Remote Sensing in Ecology and Conservation, 2018, 4, 20-33.	4.3	118
18	Examining Forest Structure With Terrestrial Lidar: Suggestions and Novel Techniques Based on Comparisons Between Scanners and Forest Treatments. Earth and Space Science, 2018, 5, 753-776.	2.6	14

TEMUULEN TS SANKEY

#	Article	IF	CITATIONS
19	Evaluating Unmanned Aerial Vehicle Images for Estimating Forest Canopy Fuels in a Ponderosa Pine Stand. Remote Sensing, 2018, 10, 1266.	4.0	67
20	Integrating cloud-based workflows in continental-scale cropland extent classification. Remote Sensing of Environment, 2018, 219, 162-179.	11.0	40
21	Mapping and measuring aeolian sand dunes with photogrammetry and LiDAR from unmanned aerial vehicles (UAV) and multispectral satellite imagery on the Paria Plateau, AZ, USA. Geomorphology, 2018, 319, 174-185.	2.6	50
22	Postâ€socialist cropland changes and abandonment in Mongolia. Land Degradation and Development, 2018, 29, 2808-2821.	3.9	12
23	UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA. Remote Sensing of Environment, 2017, 195, 30-43.	11.0	321
24	Climate, wildfire, and erosion ensemble foretells more sediment in western USA watersheds. Geophysical Research Letters, 2017, 44, 8884-8892.	4.0	95
25	Considerations for Achieving Cross-Platform Point Cloud Data Fusion across Different Dryland Ecosystem Structural States. Frontiers in Plant Science, 2017, 8, 2144.	3.6	22
26	Remote Sensing of Tamarisk Biomass, Insect Herbivory, and Defoliation: Novel Methods in the Grand Canyon Region, Arizona. Photogrammetric Engineering and Remote Sensing, 2016, 82, 645-652.	0.6	10
27	Multi-scale analysis of snow dynamics at the southern margin of the North American continental snow distribution. Remote Sensing of Environment, 2015, 169, 307-319.	11.0	26
28	WorldView-2 High Spatial Resolution Improves Desert Invasive Plant Detection. Photogrammetric Engineering and Remote Sensing, 2014, 80, 885-893.	0.6	10
29	Lidarâ€derived estimate and uncertainty of carbon sink in successional phases of woody encroachment. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 1144-1155.	3.0	25
30	Decadalâ€scale aspen changes: evidence in remote sensing and tree ring data. Applied Vegetation Science, 2012, 15, no.	1.9	7
31	Landsat-5 TM and Lidar Fusion for Sub-pixel Juniper Tree Cover Estimates in a Western Rangeland. Photogrammetric Engineering and Remote Sensing, 2011, 77, 1241-1248.	0.6	23
32	Multi-sensor Analyses of Vegetation Indices in a Semi-arid Environment. GIScience and Remote Sensing, 2010, 47, 260-275.	5.9	10
33	Characterizing Western Juniper Expansion via a Fusion of Landsat 5 Thematic Mapper and Lidar Data. Rangeland Ecology and Management, 2010, 63, 514-523.	2.3	32
34	Regional Assessment of Aspen Change and Spatial Variability on Decadal Time Scales. Remote Sensing, 2009, 1, 896-914.	4.0	10
35	Geospatial Assessment of Grazing Regime Shifts and Sociopolitical Changes in a Mongolian Rangeland. Rangeland Ecology and Management, 2009, 62, 522-530.	2.3	27
36	Assessment of Juniper Encroachment With The Use of Satellite Imagery and Geospatial Data. Rangeland Ecology and Management, 2008, 61, 412-418.	2.3	44