
Steven T Haller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5707288/publications.pdf Version: 2024-02-01

STEVEN T HALLED

#	Article	IF	CITATIONS
1	Dynamic modeling of hospitalized COVID-19 patients reveals disease state–dependent risk factors. Journal of the American Medical Informatics Association: JAMIA, 2022, 29, 864-872.	4.4	1
2	A PON for All Seasons: Comparing Paraoxonase Enzyme Substrates, Activity and Action including the Role of PON3 in Health and Disease. Antioxidants, 2022, 11, 590.	5.1	10
3	As We Drink and Breathe: Adverse Health Effects of Microcystins and Other Harmful Algal Bloom Toxins in the Liver, Gut, Lungs and Beyond. Life, 2022, 12, 418.	2.4	35
4	Paraoxonase-1 Regulation of Renal Inflammation and Fibrosis in Chronic Kidney Disease. Antioxidants, 2022, 11, 900.	5.1	7
5	Dirty Jobs: Macrophages at the Heart of Cardiovascular Disease. Biomedicines, 2022, 10, 1579.	3.2	4
6	Vascular Calcification in Chronic Kidney Disease: Diversity in the Vessel Wall. Biomedicines, 2021, 9, 404.	3.2	34
7	Tonic Inhibition of Sodium Reabsorption by Na + /K + â€ATPase in the Renal Proximal Tubule. FASEB Journal, 2021, 35, .	0.5	0
8	Microcystin-LR (MC-LR) Triggers Inflammatory Responses in Macrophages. International Journal of Molecular Sciences, 2021, 22, 9939.	4.1	5
9	Budget constrained machine learning for early prediction of adverse outcomes for COVID-19 patients. Scientific Reports, 2021, 11, 19543.	3.3	6
10	Toward Revealing Microcystin Distribution in Mouse Liver Tissue Using MALDI-MS Imaging. Toxins, 2021, 13, 709.	3.4	3
11	The ageing kidney: Molecular mechanisms and clinical implications. Ageing Research Reviews, 2020, 63, 101151.	10.9	64
12	CD40/CD40L Signaling as a Promising Therapeutic Target for the Treatment of Renal Disease. Journal of Clinical Medicine, 2020, 9, 3653.	2.4	13
13	Assessment of diagnostic biomarkers of liver injury in the setting of microcystin-LR (MC-LR) hepatotoxicity. Chemosphere, 2020, 257, 127111.	8.2	22
14	CD40 Receptor Knockout Protects against Microcystin-LR (MC-LR) Prolongation and Exacerbation of Dextran Sulfate Sodium (DSS)-Induced Colitis. Biomedicines, 2020, 8, 149.	3.2	9
15	Harmful Algal Bloom Toxicity in Lithobates catesbeiana Tadpoles. Toxins, 2020, 12, 378.	3.4	5
16	Renal Fibrosis Is Significantly Attenuated Following Targeted Disruption of <i>Cd40</i> in Experimental Renal Ischemia. Journal of the American Heart Association, 2020, 9, e014072.	3.7	11
17	Epithelial and Endothelial Adhesion of Immune Cells Is Enhanced by Cardiotonic Steroid Signaling Through Na ⁺ /K ⁺ â€ATPaseâ€i±â€1. Journal of the American Heart Association, 2020, e013933.	9,3.7	9
18	Development and Application of Extraction Methods for LC-MS Quantification of Microcystins in Liver Tissue. Toxins, 2020, 12, 263.	3.4	13

STEVEN T HALLER

#	Article	IF	CITATIONS
19	A strategic expression method of miR-29b and its anti-fibrotic effect based on RNA-sequencing analysis. PLoS ONE, 2020, 15, e0244065.	2.5	8
20	Impact of Comorbidities on SARS-CoV-2 Viral Entry-Related Genes. Journal of Personalized Medicine, 2020, 10, 146.	2.5	17
21	Exercise and Cardioprotection: A Natural Defense Against Lethal Myocardial Ischemia–Reperfusion Injury and Potential Guide to Cardiovascular Prophylaxis. Journal of Cardiovascular Pharmacology and Therapeutics, 2019, 24, 18-30.	2.0	18
22	Circulating Lactonase Activity but Not Protein Level of PON-1 Predicts Adverse Outcomes in Subjects with Chronic Kidney Disease. Journal of Clinical Medicine, 2019, 8, 1034.	2.4	16
23	Exposure to the Harmful Algal Bloom (HAB) Toxin Microcystin-LR (MC-LR) Prolongs and Increases Severity of Dextran Sulfate Sodium (DSS)-Induced Colitis. Toxins, 2019, 11, 371.	3.4	29
24	Chronic Low Dose Oral Exposure to Microcystin-LR Exacerbates Hepatic Injury in a Murine Model of Non-Alcoholic Fatty Liver Disease. Toxins, 2019, 11, 486.	3.4	30
25	Proinflammatory Effects of Cardiotonic Steroids Mediated by NKA α-1 (Na+/K+-ATPase α-1)/Src Complex in Renal Epithelial Cells and Immune Cells. Hypertension, 2019, 74, 73-82.	2.7	7
26	The Effect of Electronic-Cigarette Vaping on Cardiac Function and Angiogenesis in Mice. Scientific Reports, 2019, 9, 4085.	3.3	51
27	Hyperglycemia induces key genetic and phenotypic changes in human liver epithelial HepG2 cells which parallel the Leprdb/J mouse model of non-alcoholic fatty liver disease (NAFLD). PLoS ONE, 2019, 14, e0225604.	2.5	16
28	Na/K-ATPase/src complex mediates regulation of CD40 in renal parenchyma. Nephrology Dialysis Transplantation, 2018, 33, 1138-1149.	0.7	15
29	Cardiotonic Steroids and the Sodium Trade Balance: New Insights into Trade-Off Mechanisms Mediated by the Na+/K+-ATPase. International Journal of Molecular Sciences, 2018, 19, 2576.	4.1	32
30	Targeted disruption of regulated endocrine-specific protein (Resp18) in Dahl SS/Mcw rats aggravates salt-induced hypertension and renal injury. Physiological Genomics, 2018, 50, 369-375.	2.3	13
31	Development and applications of solid-phase extraction and liquid chromatography-mass spectrometry methods for quantification of microcystins in urine, plasma, and serum. Journal of Chromatography A, 2018, 1573, 66-77.	3.7	27
32	Circulating CD40 and sCD40L Predict Changes in Renal Function in Subjects with Chronic Kidney Disease. Scientific Reports, 2017, 7, 7942.	3.3	15
33	Targeted disruption of Cd40 in a genetically hypertensive rat model attenuates renal fibrosis and proteinuria, independent of blood pressure. Kidney International, 2017, 91, 365-374.	5.2	14
34	Cigarette smoking and cardio-renal events in patients with atherosclerotic renal artery stenosis. PLoS ONE, 2017, 12, e0173562.	2.5	11
35	MicroRNA profiling in kidney disease: Plasma versus plasma-derived exosomes. Gene, 2017, 627, 1-8.	2.2	52
36	Cigarette smoking causes epigenetic changes associated with cardiorenal fibrosis. Physiological Genomics, 2016, 48, 950-960.	2.3	21

STEVEN T HALLER

#	Article	IF	CITATIONS
37	Protein Carbonylation of an Amino Acid Residue of the Na/Kâ€ATPase α1 Subunit Determines Na/Kâ€ATPase Signaling and Sodium Transport in Renal Proximal Tubular Cells. Journal of the American Heart Association, 2016, 5, .	3.7	32
38	Rapamycin Attenuates Cardiac Fibrosis in Experimental Uremic Cardiomyopathy by Reducing Marinobufagenin Levels and Inhibiting Downstream Proâ€Fibrotic Signaling. Journal of the American Heart Association, 2016, 5, .	3.7	33
39	An alternative empirical likelihood method in missing response problems and causal inference. Statistics in Medicine, 2016, 35, 5009-5028.	1.6	3
40	Attenuation of Na/K-ATPase Mediated Oxidant Amplification with pNaKtide Ameliorates Experimental Uremic Cardiomyopathy. Scientific Reports, 2016, 6, 34592.	3.3	51
41	Hiding inside? Intracellular expression of non-glycosylated c-kit protein in cardiac progenitor cells. Stem Cell Research, 2016, 16, 795-806.	0.7	8
42	Na/K-ATPase signaling regulates collagen synthesis through microRNA-29b-3p in cardiac fibroblasts. Physiological Genomics, 2016, 48, 220-229.	2.3	47
43	Regional and physician specialty–associated variations in the medical management of atherosclerotic renal–artery stenosis. Journal of the American Society of Hypertension, 2015, 9, 443-452.	2.3	4
44	Endovascular Versus Medical Therapy for Atherosclerotic Renovascular Disease. Current Atherosclerosis Reports, 2014, 16, 459.	4.8	7
45	Reduction of Na/K-ATPase affects cardiac remodeling and increases c-kit cell abundance in partial nephrectomized mice. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1631-H1643.	3.2	23
46	Passive Immunization Against Marinobufagenin Attenuates Renal Fibrosis and Improves Renal Function in Experimental Renal Disease. American Journal of Hypertension, 2014, 27, 603-609.	2.0	32
47	Effects of Na/K-ATPase and its ligands on bone marrow stromal cell differentiation. Stem Cell Research, 2014, 13, 12-23.	0.7	23
48	Use of Renin-Angiotensin Inhibitors in People with Renal Artery Stenosis. Clinical Journal of the American Society of Nephrology: CJASN, 2014, 9, 1199-1206.	4.5	28
49	Involvement of Reactive Oxygen Species in a Feed-forward Mechanism of Na/K-ATPase-mediated Signaling Transduction. Journal of Biological Chemistry, 2013, 288, 34249-34258.	3.4	85
50	Effect of CD40 and sCD40L on Renal Function and Survival in Patients With Renal Artery Stenosis. Hypertension, 2013, 61, 894-900.	2.7	18
51	Gender differences in the development of uremic cardiomyopathy following partial nephrectomy: Role of progesterone. Journal of Hypertension: Open Access, 2013, 02, .	0.2	9
52	Mechanisms and treatments for renal artery stenosis. Discovery Medicine, 2013, 16, 255-60.	0.5	5
53	Monoclonal antibody against marinobufagenin reverses cardiac fibrosis in rats with chronic renal failure. American Journal of Hypertension, 2012, 25, 690-696.	2.0	82
54	Platelet Activation in Patients with Atherosclerotic Renal Artery Stenosis Undergoing Stent Revascularization. Clinical Journal of the American Society of Nephrology: CJASN, 2011, 6, 2185-2191.	4.5	13

STEVEN T HALLER

#	Article	IF	CITATIONS
55	Endogenous cardiotonic steroids in chronic renal failure. Nephrology Dialysis Transplantation, 2011, 26, 2912-2919.	0.7	68
56	Spironolactone Attenuates Experimental Uremic Cardiomyopathy by Antagonizing Marinobufagenin. Hypertension, 2009, 54, 1313-1320.	2.7	84
57	Complete versus partial distal embolic protection during renal artery stenting. Catheterization and Cardiovascular Interventions, 2009, 73, 725-730.	1.7	16
58	Embolic Protection and Platelet Inhibition During Renal Artery Stenting. Circulation, 2008, 117, 2752-2760.	1.6	163