Richard A Britten

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5707259/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exposure to 5 cGy 28Si Particles Induces Long-Term Microglial Activation in the Striatum and Subventricular Zone and Concomitant Neurogenic Suppression. Radiation Research, 2022, , .	0.7	3
2	Rapid loss of fine motor skills after low dose space radiation exposure. Behavioural Brain Research, 2022, 430, 113907.	1.2	10
3	Sleep fragmentation exacerbates executive function impairments induced by protracted low dose rate neutron exposure. International Journal of Radiation Biology, 2021, 97, 1077-1087.	1.0	19
4	Skilled movement and posture deficits in rat string-pulling behavior following low dose space radiation (28Si) exposure. Behavioural Brain Research, 2021, 400, 113010.	1.2	15
5	Chronic Low Dose Neutron Exposure Results in Altered Neurotransmission Properties of the Hippocampus-Prefrontal Cortex Axis in Both Mice and Rats. International Journal of Molecular Sciences, 2021, 22, 3668.	1.8	13
6	The individual and combined effects of spaceflight radiation and microgravity on biologic systems and functional outcomes. Journal of Environmental Science and Health, Part C: Toxicology and Carcinogenesis, 2021, 39, 129-179.	0.4	12
7	Exposure to Low (â‰犂O cGy) Doses of 4He Particles Leads to Increased Social Withdrawal and Loss of Executive Function Performance. Radiation Research, 2021, 196, 345-354.	0.7	14
8	Space Radiation-Induced Alterations in the Hippocampal Ubiquitin-Proteome System. International Journal of Molecular Sciences, 2021, 22, 7713.	1.8	4
9	Progressive increase in the complexity and translatability of rodent testing to assess space-radiation induced cognitive impairment. Neuroscience and Biobehavioral Reviews, 2021, 126, 159-174.	2.9	27
10	Machine Learning Models to Predict Cognitive Impairment of Rodents Subjected to Space Radiation. Frontiers in Systems Neuroscience, 2021, 15, 713131.	1.2	6
11	Predicting Space Radiation Single Ion Exposure in Rodents: A Machine Learning Approach. Frontiers in Systems Neuroscience, 2021, 15, 715433.	1.2	2
12	Dissecting Differential Complex Behavioral Responses to Simulated Space Radiation Exposures. Radiation Research, 2021, 197, .	0.7	9
13	Altered Cognitive Flexibility and Synaptic Plasticity in the Rat Prefrontal Cortex after Exposure to Low (â‰⊉5 cGy) Doses of 28Si Radiation. Radiation Research, 2020, 193, 223.	0.7	30
14	Sleep Fragmentation Exacerbates Executive Function Impairments Induced by Low Doses of Si Ions. Radiation Research, 2020, 194, 116.	0.7	13
15	Response to the Commentary from Bevelacqua et al ENeuro, 2020, 7, ENEURO.0439-19.2019.	0.9	1
16	New Concerns for Neurocognitive Function during Deep Space Exposures to Chronic, Low Dose-Rate, Neutron Radiation. ENeuro, 2019, 6, ENEURO.0094-19.2019.	0.9	80
17	Impaired Attentional Set-Shifting Performance after Exposure to 5 cGy of 600 MeV/n ²⁸ Si Particles. Radiation Research, 2018, 189, 273-282.	0.7	31
18	Exposure to â‰\$5 cGy of 600 MeV/n 56Fe Particles Impairs Rule Acquisition but not Long-Term Memory in the Attentional Set-Shifting Assay. Radiation Research, 2018, 190, 565.	0.7	33

RICHARD A BRITTEN

#	Article	IF	CITATIONS
19	Spatial Memory Performance of Socially Mature Wistar Rats is Impaired after Exposure to Low (5 cGy) Doses of 1 GeV/n ⁴⁸ Ti Particles. Radiation Research, 2017, 187, 60-65.	0.7	18
20	Changes in the Hippocampal Proteome Associated with Spatial Memory Impairment after Exposure to Low (20 cGy) Doses of 1 GeV/n 56Fe Radiation. Radiation Research, 2017, 187, 287.	0.7	20
21	Quantitative Proteomic Analysis of the Hippocampus of Rats with GCR-Induced Spatial Memory Impairment. Radiation Research, 2017, 189, 136.	0.7	14
22	Exposure to Mission-Relevant Doses of 1 GeV/n ⁴⁸ Ti Particles Impairs Attentional Set-Shifting Performance in Retired Breeder Rats. Radiation Research, 2016, 185, 13-19.	0.7	32
23	Performance in hippocampus- and PFC-dependent cognitive domains are not concomitantly impaired in rats exposed to 20 cGy of 1 GeV/n 56Fe particles. Life Sciences in Space Research, 2016, 10, 17-22.	1.2	21
24	Individual variations in dose response for spatial memory learning among outbred wistar rats exposed from 5 to 20 cGy of ⁵⁶ Fe particles. Environmental and Molecular Mutagenesis, 2016, 57, 331-340.	0.9	23
25	Cosmic radiation exposure and persistent cognitive dysfunction. Scientific Reports, 2016, 6, 34774.	1.6	167
26	Galactic cosmic ray simulation at the NASA Space Radiation Laboratory. Life Sciences in Space Research, 2016, 8, 38-51.	1.2	112
27	Impaired Spatial Memory Performance in Adult Wistar Rats Exposed to Low (5–20 cGy) Doses of 1 GeV/n ⁵⁶ Fe Particles. Radiation Research, 2016, 185, 332-337.	0.7	37
28	Exposure to Mission Relevant Doses of 1 GeV/Nucleon ⁵⁶ Fe Particles Leads to Impairment of Attentional Set-Shifting Performance in Socially Mature Rats. Radiation Research, 2014, 182, 292-298.	0.7	73
29	Variations in the RBE for Cell Killing Along the Depth-Dose Profile of a Modulated Proton Therapy Beam. Radiation Research, 2013, 179, 21-28.	0.7	119
30	Executive Function in Rats is Impaired by Low (20 cGy) Doses of 1 GeV/u ⁵⁶ Fe Particles. Radiation Research, 2012, 178, 289-294.	0.7	63
31	Low (20 cGy) Doses of 1 GeV/u ⁵⁶ Fe-Particle Radiation Lead to a Persistent Reduction in the Spatial Learning Ability of Rats. Radiation Research, 2012, 177, 146-151.	0.7	123
32	THE IDENTIFICATION OF SERUM BIOMARKERS OF HIGH-LET RADIATION EXPOSURE AND BIOLOGICAL SEQUELAE. Health Physics, 2010, 98, 196-203.	0.3	16
33	Low (60ÂcGy) Doses of ⁵⁶ Fe HZE-Particle Radiation Lead to a Persistent Reduction in the Glutamatergic Readily Releasable Pool in Rat Hippocampal Synaptosomes. Radiation Research, 2010, 174, 618-623.	0.7	98
34	Identification of reproducible low mass SELDI protein profiles specific to cisplatin resistance in human ovarian cancer cells. Oncology Reports, 2005, 14, 1323-30.	1.2	12
35	Modification of Radiosensitivity Following Chemotherapy Exposure: Potential Implications for Combined-Modality Therapy. Cancer Treatment and Research, 2002, 112, 285-303.	0.2	1
36	Biological Factors Influencing the RBE of Neutrons: Implications for Their Past, Present and Future Use in Radiotherapy. Radiation Research, 2001, 156, 125-135.	0.7	37

RICHARD A BRITTEN

#	Article	IF	CITATIONS
37	Differential impact of Raf-1 kinase activity on tumor cell resistance to paclitaxel and docetaxel. Anti-Cancer Drugs, 2000, 11, 439-443.	0.7	8
38	Paclitaxel is preferentially cytotoxic to human cervical tumor cells with low Raf-1 kinase activity: implications for paclitaxel-based chemoradiation regimens. Radiotherapy and Oncology, 1998, 48, 329-334.	0.3	21
39	Constancy of the Relative Biological Effectiveness of 42 MeV (p→Be +) Neutrons among Cell Lines with Different DNA Repair Proficiencies. Radiation Research, 1997, 148, 308.	0.7	27
40	Effect of cisplatin on the clinically relevant radiosensitivity of human cervical carcinoma cell lines. International Journal of Radiation Oncology Biology Physics, 1996, 34, 367-374.	0.4	57
41	Mechanisms of Cyclophosphamide Resistance in a Human Myeloid Leukemia Cell Line. Acta Oncológica, 1995, 34, 247-251.	0.8	22
42	Differential modulation of radiosensitivity following induction ofcis-platinum resistance in radiation-sensitive and radiation-resistant human tumor cells. Radiation Oncology Investigations, 1994, 2, 25-31.	1.3	8
43	The relative cellular radiosensitivity of 30 human in vitro cell lines of different histological type to high LET 62.5 MeV (p → Be+) fast neutrons and 4 MeV photons. Radiotherapy and Oncology, 1994, 30, 83-89.	0.3	26
44	In Vitro Studies of Intrinsic Cellular Radiosensitivity Following 4 MeV Photons or 62.5 MeV (p⇒ Be+) Neutrons: Potential implications for high LET therapy. Acta Oncológica, 1994, 33, 241-249.	0.8	9
45	The differential induction of collateral resistance to 62.5 MeV (p→Be+) neutrons and 4 MeV photons by exposure to cis-platinum. International Journal of Radiation Oncology Biology Physics, 1993, 26, 837-843.	0.4	13
46	Collateral resistance to photon and neutron irradiation is associated with acquired cis-platinum resistance in human ovarian tumour cells. Radiotherapy and Oncology, 1992, 23, 170-175.	0.3	18