Peter B Straumal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/570721/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magnetization study of nanograined pure and Mn-doped ZnO films: Formation of a ferromagnetic grain-boundary foam. Physical Review B, 2009, 79, .	3.2	343
2	Increase of Mn solubility with decreasing grain size in ZnO. Journal of the European Ceramic Society, 2009, 29, 1963-1970.	5.7	142
3	Increase of Co solubility with decreasing grain size in ZnO. Acta Materialia, 2008, 56, 6246-6256.	7.9	125
4	Ferromagnetism of zinc oxide nanograined films. JETP Letters, 2013, 97, 367-377.	1.4	109
5	Ferromagnetic properties of the Mn-doped nanograined ZnO films. Journal of Applied Physics, 2010, 108, .	2.5	108
6	Grain boundaries as the controlling factor for the ferromagnetic behaviour of Co-doped ZnO. Philosophical Magazine, 2013, 93, 1371-1383.	1.6	100
7	Ferromagnetic behaviour of ZnO: the role of grain boundaries. Beilstein Journal of Nanotechnology, 2016, 7, 1936-1947.	2.8	99
8	Interfacial dominated ferromagnetism in nanograined ZnO: a μSR and DFT study. Scientific Reports, 2015, 5, 8871.	3.3	97
9	Ferromagnetic behaviour of Fe-doped ZnO nanograined films. Beilstein Journal of Nanotechnology, 2013, 4, 361-369.	2.8	92
10	Amorphous interlayers between crystalline grains in ferromagnetic ZnO films. Materials Letters, 2012, 71, 21-24.	2.6	89
11	Grain boundary layers in nanocrystalline ferromagnetic zinc oxide. JETP Letters, 2010, 92, 396-400.	1.4	87
12	Amorphous grain boundary layers in the ferromagnetic nanograined ZnO films. Thin Solid Films, 2011, 520, 1192-1194.	1.8	86
13	Ferromagnetism of nanostructured zinc oxide films. Physics of Metals and Metallography, 2012, 113, 1244-1256.	1.0	82
14	Influence of texture on the ferromagnetic properties of nanograined ZnO films. Physica Status Solidi (B): Basic Research, 2011, 248, 1581-1586.	1.5	81
15	Increase of Fe solubility in ZnO induced by the grain boundary adsorption. Journal of Materials Science, 2014, 49, 4490-4498.	3.7	77
16	Phase Transformations Induced by Severe Plastic Deformation. Materials Transactions, 2019, 60, 1489-1499.	1.2	63
17	Phase transitions in Cu-based alloys under high pressure torsion. Journal of Alloys and Compounds, 2017, 707, 20-26.	5.5	61
18	Improvement of strength and conductivity in Cu-alloys with the application of high pressure torsion and subsequent heat-treatments. Journal of Materials Science, 2014, 49, 6674-6681.	3.7	53

PETER B STRAUMAL

#	Article	IF	CITATIONS
19	Amorphization of Nd–Fe–B alloy under the action of high-pressure torsion. Materials Letters, 2015, 145, 63-66.	2.6	35
20	Structure Refinement and Fragmentation of Precipitates under Severe Plastic Deformation: A Review. Materials, 2022, 15, 601.	2.9	20
21	Phase transformations in a Cu Cr alloy induced by high pressure torsion. Materials Characterization, 2016, 114, 151-156.	4.4	18
22	Severe Plastic Deformation and Phase Transformations in High Entropy Alloys: A Review. Crystals, 2022, 12, 54.	2.2	13
23	Direct observation of strain-induced non-equilibrium grain boundaries. Materials Letters, 2015, 159, 432-435.	2.6	9
24	Diffusion of 63Ni in severely deformed ultrafine grained Cu-based alloys. Scripta Materialia, 2017, 127, 141-145.	5.2	6
25	Microstructure, Microhardness and Corrosion Resistance of WE43 Alloy Based Composites after High-Pressure Torsion. Materials, 2019, 12, 2980.	2.9	6
26	Faceting of Twin Grain Boundaries in Highâ€Purity Copper Subjected to High Pressure Torsion. Advanced Engineering Materials, 2020, 22, 1900589.	3.5	4
27	Phase Composition and Properties of Magnesium-Ceramic Composites after High Pressure Torsion. Defect and Diffusion Forum, 2018, 385, 218-222.	0.4	2
28	Grain Boundary Phase Transformations in Nanostructured Conducting Oxides. Nanoscience and Technology, 2009, , 75-88.	1.5	1
29	Diffusion in an Ensemble of Intersecting Grain Boundaries. Defect and Diffusion Forum, 0, 354, 121-127.	0.4	0
30	Aging of WE43 magnesium alloy after mechanical crushing and subsequent high pressure torsion. Letters on Materials, 2019, 9, 370-374.	0.7	0