
Walter S De Jong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5707174/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single nucleotide polymorphism discovery in elite north american potato germplasm. BMC Genomics, 2011, 12, 302.	1.2	196
2	Software for Genomeâ€Wide Association Studies in Autopolyploids and Its Application to Potato. Plant Genome, 2016, 9, plantgenome2015.08.0073.	1.6	191
3	Reinventing Potato as a Diploid Inbred Line–Based Crop. Crop Science, 2016, 56, 1412-1422.	0.8	176
4	Retrospective View of North American Potato (<i>Solanum tuberosum</i> L.) Breeding in the 20th and 21st Centuries. G3: Genes, Genomes, Genetics, 2013, 3, 1003-1013.	0.8	171
5	The A locus that controls anthocyanin accumulation in pepper encodes a MYB transcription factor homologous to Anthocyanin2 of Petunia. Theoretical and Applied Genetics, 2004, 109, 23-29.	1.8	156
6	Candidate gene analysis of anthocyanin pigmentation loci in the Solanaceae. Theoretical and Applied Genetics, 2004, 108, 423-432.	1.8	137
7	The potato developer (D) locus encodes an R2R3 MYB transcription factor that regulates expression of multiple anthocyanin structural genes in tuber skin. Theoretical and Applied Genetics, 2009, 120, 45-57.	1.8	132
8	Genetic Variance Partitioning and Genome-Wide Prediction with Allele Dosage Information in Autotetraploid Potato. Genetics, 2018, 209, 77-87.	1.2	117
9	The potato P locus codes for flavonoid 3′,5′-hydroxylase. Theoretical and Applied Genetics, 2005, 110, 269-275.	1.8	87
10	Phased, chromosome-scale genome assemblies of tetraploid potato reveal a complex genome, transcriptome, and predicted proteome landscape underpinning genetic diversity. Molecular Plant, 2022, 15, 520-536.	3.9	72
11	Genetic analysis of pigmented tuber flesh in potato. Theoretical and Applied Genetics, 2009, 119, 143-150.	1.8	68
12	The potato R locus codes for dihydroflavonol 4-reductase. Theoretical and Applied Genetics, 2009, 119, 931-937.	1.8	63
13	Application of high-resolution DNA melting for genotyping and variant scanning of diploid and autotetraploid potato. Molecular Breeding, 2010, 25, 67-90.	1.0	54
14	In Planta Processing and Glycosylation of a Nematode CLAVATA3/ENDOSPERM SURROUNDING REGION-Like Effector and Its Interaction with a Host CLAVATA2-Like Receptor to Promote Parasitism. Plant Physiology, 2015, 167, 262-272.	2.3	52
15	An allele of dihydroflavonol 4-reductase associated with the ability to produce red anthocyanin pigments in potato (Solanum tuberosum L.). Theoretical and Applied Genetics, 2003, 107, 1375-1383.	1.8	50
16	Mapping Loci That Control Tuber and Foliar Symptoms Caused by PVY in Autotetraploid Potato (<i>Solanum tuberosum</i> L.). G3: Genes, Genomes, Genetics, 2017, 7, 3587-3595.	0.8	44
17	A fluorogenic 5′ nuclease (TaqMan) assay to assess dosage of a marker tightly linked to red skin color in autotetraploid potato. Theoretical and Applied Genetics, 2003, 107, 1384-1390.	1.8	25
18	Application of DNA markers linked to the potato H1 gene conferring resistance to pathotype Ro1 of Globodera rostochiensis. Journal of Applied Genetics, 2011, 52, 407-411.	1.0	25

Walter S De Jong

#	Article	IF	CITATIONS
19	Potato Variety Diversity, Determinants and Implications for Potato Breeding Strategy in Ethiopia. American Journal of Potato Research, 2015, 92, 551-566.	0.5	24
20	Genetic Diversity and Relationship of Ethiopian Potato Varieties to Germplasm from North America, Europe and the International Potato Center. American Journal of Potato Research, 2016, 93, 609-619.	0.5	16
21	Participatory Variety Selection: A Tool to Understand Farmers′ Potato Variety Selection Criteria. Open Agriculture, 2017, 2, 453-463.	0.7	16
22	An Evaluation of two H1-Linked Markers and their Suitability for Selecting Globodera rostochiensis Resistant Potatoes in the New York Breeding Program. American Journal of Potato Research, 2018, 95, 170-177.	0.5	12
23	QTL for Resistance to Globodera rostochiensis Pathotype Ro2 and G. pallida Pathotype Pa2/3 in Autotetraploid Potato. American Journal of Potato Research, 2019, 96, 552-563.	0.5	11
24	Genetic analysis of potato tuber metabolite composition: Genomeâ€wide association studies applied to a nontargeted metabolome. Crop Science, 2021, 61, 591-603.	0.8	9
25	Lamoka, a Variety with Excellent Chip Color Out of Cold Storage and Resistance to the Golden Cyst Nematode. American Journal of Potato Research, 2017, 94, 148-152.	0.5	5
26	Marcy: A chipping variety with resistance to common scab and the golden nematode. American Journal of Potato Research, 2006, 83, 189-193.	0.5	4
27	First Report in North America of Atypical Symptoms Caused by <i>Colletotrichum coccodes</i> on Field-Grown Potato Tubers During Storage. Plant Health Progress, 2010, 11, .	0.8	2
28	Waneta, a Variety with Excellent Chip Color out of Cold Storage, Long Tuber Dormancy, and Resistance to the Golden Cyst Nematode. American Journal of Potato Research, 2020, 97, 580-585.	0.5	1