John B Bruning

List of Publications by Citations

Source: https://exaly.com/author-pdf/5707063/john-b-bruning-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

86 2,663 51 22 h-index g-index citations papers 3,169 6.8 4.86 95 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
86	Antidiabetic actions of a non-agonist PPAR ligand blocking Cdk5-mediated phosphorylation. <i>Nature</i> , 2011 , 477, 477-81	50.4	404
85	Partial agonists activate PPARgamma using a helix 12 independent mechanism. <i>Structure</i> , 2007 , 15, 125	58 5 . <u>7</u> 21	271
84	Structural and thermodynamic analysis of human PCNA with peptides derived from DNA polymerase-delta p66 subunit and flap endonuclease-1. <i>Structure</i> , 2004 , 12, 2209-19	5.2	163
83	DNA binding alters coactivator interaction surfaces of the intact VDR-RXR complex. <i>Nature Structural and Molecular Biology</i> , 2011 , 18, 556-63	17.6	154
82	NFkappaB selectivity of estrogen receptor ligands revealed by comparative crystallographic analyses. <i>Nature Chemical Biology</i> , 2008 , 4, 241-7	11.7	123
81	Review of the Structural and Dynamic Mechanisms of PPAR[Partial Agonism. <i>PPAR Research</i> , 2015 , 2015, 816856	4.3	112
80	Structural plasticity in the oestrogen receptor ligand-binding domain. <i>EMBO Reports</i> , 2007 , 8, 563-8	6.5	109
79	Rare variants in single-minded 1 (SIM1) are associated with severe obesity. <i>Journal of Clinical Investigation</i> , 2013 , 123, 3042-50	15.9	107
78	Coupling of receptor conformation and ligand orientation determine graded activity. <i>Nature Chemical Biology</i> , 2010 , 6, 837-43	11.7	102
77	Structure of the Mycobacterium tuberculosis D-alanine: D-alanine ligase, a target of the antituberculosis drug D-cycloserine. <i>Antimicrobial Agents and Chemotherapy</i> , 2011 , 55, 291-301	5.9	89
76	Structural mechanism for signal transduction in RXR nuclear receptor heterodimers. <i>Nature Communications</i> , 2015 , 6, 8013	17.4	84
75	Pharmacological repression of PPAR[promotes osteogenesis. <i>Nature Communications</i> , 2015 , 6, 7443	17.4	79
74	Prediction of the tissue-specificity of selective estrogen receptor modulators by using a single biochemical method. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 7171-6	11.5	76
73	Loss-of-function mutations in SIM1 contribute to obesity and Prader-Willi-like features. <i>Journal of Clinical Investigation</i> , 2013 , 123, 3037-41	15.9	75
72	Elemental isomerism: a boron-nitrogen surrogate for a carbon-carbon double bond increases the chemical diversity of estrogen receptor ligands. <i>Chemistry and Biology</i> , 2007 , 14, 659-69		57
71	Analysis of the mutation dynamics of SARS-CoV-2 reveals the spread history and emergence of RBD mutant with lower ACE2 binding affinity		46
70	PPARG Post-translational Modifications Regulate Bone Formation and Bone Resorption. <i>EBioMedicine</i> , 2016 , 10, 174-84	8.8	45

(2015-2017)

69	Expressing a moth abcc2 gene in transgenic Drosophila causes susceptibility to Bt Cry1Ac without requiring a cadherin-like protein receptor. <i>Insect Biochemistry and Molecular Biology</i> , 2017 , 80, 61-70	4.5	35
68	The TB Structural Genomics Consortium: a decade of progress. <i>Tuberculosis</i> , 2011 , 91, 155-72	2.6	33
67	SR2067 Reveals a Unique Kinetic and Structural Signature for PPARIPartial Agonism. <i>ACS Chemical Biology</i> , 2016 , 11, 273-83	4.9	30
66	Structural insights into the mechanism of the allosteric transitions of Mycobacterium tuberculosis cAMP receptor protein. <i>Journal of Biological Chemistry</i> , 2009 , 284, 36581-36591	5.4	30
65	PPARlin Complex with an Antagonist and Inverse Agonist: a Tumble and Trap Mechanism of the Activation Helix. <i>IScience</i> , 2018 , 5, 69-79	6.1	29
64	HDX reveals the conformational dynamics of DNA sequence specific VDR co-activator interactions. <i>Nature Communications</i> , 2017 , 8, 923	17.4	22
63	Macrocyclic protease inhibitors with reduced peptide character. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 7828-31	16.4	21
62	p21 Exploits Residue Tyr151 as a Tether for High-Affinity PCNA Binding. <i>Biochemistry</i> , 2015 , 54, 3483-93	33.2	21
61	Shooting three inflammatory targets with a single bullet: Novel multi-targeting anti-inflammatory glitazones. <i>European Journal of Medicinal Chemistry</i> , 2019 , 167, 562-582	6.8	20
60	CYP199A4 catalyses the efficient demethylation and demethenylation of para-substituted benzoic acid derivatives. <i>RSC Advances</i> , 2015 , 5, 52007-52018	3.7	18
59	Human variants in the neuronal basic helix-loop-helix/Per-Arnt-Sim (bHLH/PAS) transcription factor complex NPAS4/ARNT2 disrupt function. <i>PLoS ONE</i> , 2014 , 9, e85768	3.7	18
58	Structure, activity, and inhibition of the Carboxyltransferase Bubunit of acetyl coenzyme A carboxylase (AccD6) from Mycobacterium tuberculosis. <i>Antimicrobial Agents and Chemotherapy</i> , 2014 , 58, 6122-32	5.9	16
57	Mechanisms Governing Precise Protein Biotinylation. <i>Trends in Biochemical Sciences</i> , 2017 , 42, 383-394	10.3	15
56	Structure-Activity Relationship of 2,4-Dichloro-N-(3,5-dichloro-4-(quinolin-3-yloxy)phenyl)benzenesulfonamide (INT131) Analogs for PPARETargeted Antidiabetics. <i>Journal of Medicinal Chemistry</i> , 2017 , 60, 4584-4593	8.3	14
55	Chemical Crosslinking Mass Spectrometry Reveals the Conformational Landscape of the Activation Helix of PPAR Da Model for Ligand-Dependent Antagonism. <i>Structure</i> , 2018 , 26, 1431-1439.e6	5.2	14
54	Cytochrome P450 CYP199A4 from Rhodopseudomonas palustris Catalyzes Heteroatom Dealkylations, Sulfoxidation, and Amide and Cyclic Hemiacetal Formation. <i>ACS Catalysis</i> , 2018 , 8, 5915-5	5 527	14
53	Structure, Mechanism, and Inhibition of Thioredoxin Reductase. <i>Antimicrobial Agents and Chemotherapy</i> , 2019 , 63,	5.9	13
52	New insights into the evolutionary history of plant sorbitol dehydrogenase. <i>BMC Plant Biology</i> , 2015 , 15, 101	5.3	12

51	Targeting PCNA with Peptide Mimetics for Therapeutic Purposes. ChemBioChem, 2020, 21, 442-450	3.8	12
50	X-ray crystal structure of rivoglitazone bound to PPAR[and PPAR subtype selectivity of TZDs. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2017 , 1861, 1981-1991	4	11
49	Structural insights into the role of the acid-alcohol pair of residues required for dioxygen activation in cytochrome P450 enzymes. <i>Journal of Biological Inorganic Chemistry</i> , 2020 , 25, 583-596	3.7	10
48	A mechanistic study on the inhibition of Ethymotrypsin by a macrocyclic peptidomimetic aldehyde. <i>Organic and Biomolecular Chemistry</i> , 2016 , 14, 6970-8	3.9	9
47	Rational Design of a 3 -Helical PIP-Box Mimetic Targeting PCNA, the Human Sliding Clamp. <i>Chemistry - A European Journal</i> , 2018 , 24, 11325-11331	4.8	9
46	An aldo-keto reductase with 2-keto-l-gulonate reductase activity functions in l-tartaric acid biosynthesis from vitamin C in. <i>Journal of Biological Chemistry</i> , 2019 , 294, 15932-15946	5.4	9
45	Investigation of the requirements for efficient and selective cytochrome P450 monooxygenase catalysis across different reactions. <i>Journal of Inorganic Biochemistry</i> , 2020 , 203, 110913	4.2	9
44	Structure of the apo form of Bacillus stearothermophilus phosphofructokinase. <i>Biochemistry</i> , 2012 , 51, 769-75	3.2	8
43	Unique Polypharmacology Nuclear Receptor Modulator Blocks Inflammatory Signaling Pathways. <i>ACS Chemical Biology</i> , 2019 , 14, 1051-1062	4.9	7
42	Structural and functional characterisation of the cytochrome P450 enzyme CYP268A2 from. <i>Biochemical Journal</i> , 2018 , 475, 705-722	3.8	7
41	Characterization of human variants in obesity-related SIM1 protein identifies a hot-spot for dimerization with the partner protein ARNT2. <i>Biochemical Journal</i> , 2014 , 461, 403-12	3.8	7
40	Vanishing white matter: Eukaryotic initiation factor 2B model and the impact of missense mutations. <i>Molecular Genetics & Denomic Medicine</i> , 2021 , 9, e1593	2.3	7
39	Understanding the Mechanistic Requirements for Efficient and Stereoselective Alkene Epoxidation by a Cytochrome P450 Enzyme. <i>ACS Catalysis</i> , 2021 , 11, 1995-2010	13.1	7
38	Structure of the sliding clamp from the fungal pathogen Aspergillus fumigatus (AfumPCNA) and interactions with Human p21. <i>FEBS Journal</i> , 2017 , 284, 985-1002	5.7	6
37	Biophysical Techniques for Distinguishing Ligand Binding Modes in Cytochrome P450 Monooxygenases. <i>Biochemistry</i> , 2020 , 59, 1038-1050	3.2	6
36	d-Alanine-d-alanine ligase as a model for the activation of ATP-grasp enzymes by monovalent cations. <i>Journal of Biological Chemistry</i> , 2020 , 295, 7894-7904	5.4	6
35	Mycobacterium tuberculosis Dethiobiotin Synthetase Facilitates Nucleoside Triphosphate Promiscuity through Alternate Binding Modes. <i>ACS Catalysis</i> , 2018 , 8, 10774-10783	13.1	6
34	Targeting Unconventional Pathways in Pursuit of Novel Antifungals. <i>Frontiers in Molecular Biosciences</i> , 2020 , 7, 621366	5.6	6

(2021-2021)

33	The therapeutic potential of inhibiting PPARIphosphorylation to treat type 2 diabetes. <i>Journal of Biological Chemistry</i> , 2021 , 297, 101030	5.4	5	
32	Redefining the role of the quaternary shift in Bacillus stearothermophilus phosphofructokinase. <i>Biochemistry</i> , 2013 , 52, 5421-9	3.2	4	
31	A comparison of steroid and lipid binding cytochrome P450s from Mycobacterium marinum and Mycobacterium tuberculosis. <i>Journal of Inorganic Biochemistry</i> , 2020 , 209, 111116	4.2	4	•
30	The characterisation of two members of the cytochrome P450 CYP150 family: CYP150A5 and CYP150A6 from Mycobacterium marinum. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2019 , 1863, 925-934	4	3	
29	Structure of Aspergillus fumigatus Cytosolic Thiolase: Trapped Tetrahedral Reaction Intermediates and Activation by Monovalent Cations. <i>ACS Catalysis</i> , 2018 , 8, 1973-1989	13.1	3	•
28	Sulfonamide-Based Inhibitors of Biotin Protein Ligase as New Antibiotic Leads. <i>ACS Chemical Biology</i> , 2019 , 14, 1990-1997	4.9	3	
27	Structural and Dynamic Elucidation of a Non-acid PPAR Partial Agonist: SR1988. <i>Nuclear Receptor Research</i> , 2018 , 5,	1.4	3	
26	Precipitant-ligand exchange technique reveals the ADP binding mode in Mycobacterium tuberculosis dethiobiotin synthetase. <i>Acta Crystallographica Section D: Structural Biology</i> , 2018 , 74, 965	-972	3	
25	Immunogenicity study of engineered ferritins with C- and N-terminus insertion of Epstein-Barr nuclear antigen 1 epitope. <i>Vaccine</i> , 2021 , 39, 4830-4841	4.1	3	
24	Obtaining Crystals of PPARILigand Binding Domain Bound to Small Molecules. <i>Methods in Molecular Biology</i> , 2019 , 1966, 253-260	1.4	2	
23	An Altered Heme Environment in an Engineered Cytochrome P450 Enzyme Enables the Switch from Monooxygenase to Peroxygenase Activity. <i>ACS Catalysis</i> , 2022 , 12, 1614-1625	13.1	2	
22	Combining random microseed matrix screening and the magic triangle for the efficient structure solution of a potential lysin from bacteriophage P68. <i>Acta Crystallographica Section D: Structural Biology</i> , 2019 , 75, 670-681	5.5	2	
21	An antimony-phosphomolybdate microassay of ATPase activity through the detection of inorganic phosphate. <i>Analytical Biochemistry</i> , 2021 , 623, 114170	3.1	2	
20	Nucleoside selectivity of Aspergillus fumigatus nucleoside-diphosphate kinase. <i>FEBS Journal</i> , 2021 , 288, 2398-2417	5.7	2	
19	Crystal Structure of Bovine Alpha-Chymotrypsin in Space Group P65. <i>Crystals</i> , 2018 , 8, 460	2.3	2	
18	Constitutive JAK/STAT signaling is the primary mechanism of resistance to JAKi in TYK2-rearranged acute lymphoblastic leukemia. <i>Cancer Letters</i> , 2021 , 512, 28-37	9.9	2	
17	Structural plasticity in the oestrogen receptor ligand-binding domain. <i>EMBO Reports</i> , 2007 , 8, 610-610	6.5	1	
16	Approaches to Introduce Helical Structure in Cysteine-Containing Peptides with a Bimane Group. <i>ChemBioChem</i> , 2021 , 22, 2711-2720	3.8	1	

15	Acquired JAK2 mutations confer resistance to JAK inhibitors in cell models of acute lymphoblastic leukemia. <i>Npj Precision Oncology</i> , 2021 , 5, 75	9.8	1
14	The Stereoselective Oxidation of para-Substituted Benzenes by a Cytochrome P450 Biocatalyst. <i>Chemistry - A European Journal</i> , 2021 , 27, 14765-14777	4.8	1
13	Unlocking the PIP-box: A peptide library reveals interactions that drive high-affinity binding to human PCNA. <i>Journal of Biological Chemistry</i> , 2021 , 296, 100773	5.4	1
12	Structural insights into the antifungal drug target guanosine monophosphate synthase from Aspergillus fumigatus <i>Acta Crystallographica Section D: Structural Biology</i> , 2022 , 78, 248-259	5.5	O
11	Different Geometric Requirements for Cytochrome P450-Catalyzed Aliphatic Versus Aromatic Hydroxylation Results in Chemoselective Oxidation. <i>ACS Catalysis</i> , 1258-1267	13.1	О
10	TSC-insensitive Rheb mutations induce oncogenic transformation through a combination of constitutively active mTORC1 signalling and proteome remodelling. <i>Cellular and Molecular Life Sciences</i> , 2021 , 78, 4035-4052	10.3	O
9	Simplified heavy-atom derivatization of protein structures via co-crystallization with the MAD tetragon tetrabromoterephthalic acid. <i>Acta Crystallographica Section F, Structural Biology Communications</i> , 2021 , 77, 156-162	1.1	О
8	The role of N-terminal heterocycles in hydrogen bonding to Ethymotrypsin. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2019 , 29, 396-399	2.9	Ο
7	A cell permeable bimane-constrained PCNA-interacting peptide. RSC Chemical Biology, 2021, 2, 1499-15	50 _/ 8	0
6	Inhibition of Dethiobiotin Synthase (DTBS): Toward Next-Generation Antituberculosis Agents. <i>ACS Chemical Biology</i> , 2021 , 16, 2339-2347	4.9	О
5	A comparison of the bacterial CYP51 cytochrome P450 enzymes from Mycobacterium marinum and Mycobacterium tuberculosis <i>Journal of Steroid Biochemistry and Molecular Biology</i> , 2022 , 106097	5.1	O
4	Rational Design of a 310-Helical PIP-Box Mimetic Targeting PCNA, the Human Sliding Clamp. <i>Chemistry - A European Journal</i> , 2018 , 24, 11238-11238	4.8	
3	A turn-on fluorescent PCNA sensor. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2021 , 41, 128031	2.9	
2	Engineering potassium activation into biosynthetic thiolase. <i>Biochemical Journal</i> , 2021 , 478, 3047-3062	3.8	

PPAR and Ligand Design: Honing the Traditional Empirical Method with a More Holistic Overview **2021**, 111-178