Yong Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5706721/publications.pdf

Version: 2024-02-01

	1040056	752698
501	9	20
citations	h-index	20 g-index
21	21	751
docs citations	times ranked	citing authors
	citations 21	501 9 citations h-index 21 21

#	Article	IF	CITATIONS
1	Angiotensin($1\hat{a}\in "7$) activates MAS-1 and upregulates CFTR to promote insulin secretion in pancreatic \hat{l}^2 -cells: the association with type 2 diabetes. Endocrine Connections, 2022, 11, .	1.9	3
2	Photonic Nanojetâ€Mediated Optogenetics. Advanced Science, 2022, 9, e2104140.	11.2	17
3	Neuron-specific enolase promotes stem cell-like characteristics of small-cell lung cancer by downregulating NBL1 and activating the BMP2/Smad/ID1 pathway. Oncogenesis, 2022, 11, 21.	4.9	7
4	Neuron specific enolase promotes tumor metastasis by activating the Wnt/ \hat{l}^2 -catenin pathway in small cell lung cancer. Translational Oncology, 2021, 14, 101039.	3.7	10
5	Antitumor activity studies of iridium (III) polypyridine complexes-loaded liposomes against gastric tumor cell in vitro. Journal of Inorganic Biochemistry, 2021, 225, 111603.	3.5	7
6	Involvement of kisspeptin in androgen-induced hypothalamic endoplasmic reticulum stress and its rescuing effect in PCOS rats. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166242.	3.8	4
7	Increased coexpression of PD-L1 and TIM3/TIGIT is associated with poor overall survival of patients with esophageal squamous cell carcinoma. , 2021, 9, e002836.		31
8	A Multiparametric MR-Based RadioFusionOmics Model with Robust Capabilities of Differentiating Glioblastoma Multiforme from Solitary Brain Metastasis. Cancers, 2021, 13, 5793.	3.7	7
9	Construction and Validation of a Protein Prognostic Model for Lung Squamous Cell Carcinoma. International Journal of Medical Sciences, 2020, 17, 2718-2727.	2.5	6
10	IL- $1\hat{l}^2$ Promotes Stemness of Tumor Cells by Activating Smad/ID1 Signaling Pathway. International Journal of Medical Sciences, 2020, 17, 1257-1268.	2.5	16
11	MicroRNA-148b enhances the radiosensitivity of B-cell lymphoma cells by targeting Bcl-w to promote apoptosis. International Journal of Biological Sciences, 2020, 16, 935-946.	6.4	8
12	Circulating tumor cells as a new predictive and prognostic factor in patients with small cell lung cancer. Journal of Cancer, 2020, 11, 2113-2122.	2.5	40
13	Analysis of the Role and Regulatory Mechanism of hsa-miR-504 in Cervical Cancer Based on The Cancer Genome Atlas Database. Cancer Biotherapy and Radiopharmaceuticals, 2020, 36, 511-520.	1.0	4
14	<p>Silencing UBE4B induces nasopharyngeal carcinoma apoptosis through the activation of caspase3 and p53</p> . OncoTargets and Therapy, 2019, Volume 12, 2553-2561.	2.0	27
15	Knockdown of neuron‑specific enolase suppresses the proliferation and migration of NCI‑H209 cells. Oncology Letters, 2019, 18, 4809-4815.	1.8	4
16	ADAM10 is essential for cranial neural crest-derived maxillofacial bone development. Biochemical and Biophysical Research Communications, 2016, 475, 308-314.	2.1	8
17	Traumatic Brain Injury-Induced Neuronal Apoptosis is Reduced Through Modulation of PI3K and Autophagy Pathways in Mouse by FTY720. Cellular and Molecular Neurobiology, 2016, 36, 131-142.	3.3	64
18	Alpha lipoic acid inhibits neural apoptosis via a mitochondrial pathway in rats following traumatic brain injury. Neurochemistry International, 2015, 87, 85-91.	3.8	42

Yong Wu

#	Article	IF	CITATION
19	Rapamycin protects against apoptotic neuronal death and improves neurologic function after traumatic brain injury in mice via modulation of the mTOR-p53-Bax axis. Journal of Surgical Research, 2015, 194, 239-247.	1.6	52
20	Melatonin protects the brain from apoptosis by enhancement ofÂautophagy after traumatic brain injury in mice. Neurochemistry International, 2015, 91, 46-54.	3.8	90
21	Posttraumatic administration of luteolin protects mice from traumatic brain injury: Implication of autophagy and inflammation. Brain Research, 2014, 1582, 237-246.	2.2	54