
Heidrun Gruber-Woelfler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5706258/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Continuously Seeded, Continuously Operated Tubular Crystallizer for the Production of Active Pharmaceutical Ingredients. Crystal Growth and Design, 2010, 10, 2247-2257.	3.0	118
2	Continuous Sonocrystallization of Acetylsalicylic Acid (ASA): Control of Crystal Size. Crystal Growth and Design, 2012, 12, 4733-4738.	3.0	110
3	Synthesis, catalytic activity, and leaching studies of a heterogeneous Pd-catalyst including an immobilized bis(oxazoline) ligand. Journal of Catalysis, 2012, 286, 30-40.	6.2	89
4	Seed loading effects on the mean crystal size of acetylsalicylic acid in a continuousâ€flow crystallization device. Crystal Research and Technology, 2011, 46, 227-237.	1.3	81
5	Design and 3D printing of a stainless steel reactor for continuous difluoromethylations using fluoroform. Reaction Chemistry and Engineering, 2017, 2, 919-927.	3.7	73
6	Printing medicines as orodispersible dosage forms: Effect of substrate on the printed micro-structure. International Journal of Pharmaceutics, 2016, 509, 518-527.	5.2	52
7	A chemo-enzymatic tandem reaction in a mixture of deep eutectic solvent and water in continuous flow. Reaction Chemistry and Engineering, 2020, 5, 263-269.	3.7	38
8	Biocatalytic production of adiponitrile and related aliphatic linear α,ω-dinitriles. Nature Communications, 2018, 9, 5112.	12.8	35
9	Development of customized 3D printed stainless steel reactors with inline oxygen sensors for aerobic oxidation of Grignard reagents in continuous flow. Reaction Chemistry and Engineering, 2019, 4, 393-401.	3.7	35
10	Crystal Shape Modification via Cycles of Growth and Dissolution in a Tubular Crystallizer. Crystal Growth and Design, 2018, 18, 4403-4415.	3.0	33
11	Titanocene-Catalyzed Hydrosilylation of Imines: Experimental and Computational Investigations of the Catalytically Active Species. Organometallics, 2009, 28, 2546-2553.	2.3	26
12	Reaction Calorimetry in Microreactor Environments—Measuring Heat of Reaction by Isothermal Heat Flux Calorimetry. Organic Process Research and Development, 2017, 21, 763-770.	2.7	24
13	3D Printed Reactors for Synthesis of Active Pharmaceutical Ingredients in Continuous Flow. Organic Process Research and Development, 2020, 24, 2197-2207.	2.7	21
14	Suzuki-Miyaura coupling reactions using novel metal oxide supported ionic palladium catalysts. Journal of Molecular Catalysis A, 2017, 426, 39-51.	4.8	19
15	Photobiocatalysis in Continuous Flow. Frontiers in Catalysis, 2022, 1, .	3.9	18
16	Continuous Suzuki—Miyaura reactions with novel Ce—Sn—Pd oxides and integrated crystallization as continuous downstream protocol. Journal of Flow Chemistry, 2016, 6, 244-251.	1.9	16
17	Drug–Excipient Interactions in the Solid State: The Role of Different Stress Factors. Molecular Pharmaceutics, 2017, 14, 4560-4571.	4.6	15
18	3D printed ceramics as solid supports for enzyme immobilization: an automated DoE approach for applications in continuous flow. Journal of Flow Chemistry, 2021, 11, 675-689.	1.9	15

#	Article	IF	CITATIONS
19	A modular 3D printed isothermal heat flow calorimeter for reaction calorimetry in continuous flow. Reaction Chemistry and Engineering, 2020, 5, 1410-1420.	3.7	13
20	Continuous-Flow In-Line Solvent-Swap Crystallization of Vitamin D ₃ . Organic Process Research and Development, 2018, 22, 178-189.	2.7	12
21	DERA in Flow: Synthesis of a Statin Side Chain Precursor in Continuous Flow Employing Deoxyribose-5-Phosphate Aldolase Immobilized in Alginate-Luffa Matrix. Catalysts, 2020, 10, 137.	3.5	12
22	UV-induced immobilization of tethered zirconocenes on H-terminated silicon surfaces. Chemical Communications, 2008, , 1329.	4.1	11
23	Heterogeneous Pd catalysts as emulsifiers in Pickering emulsions for integrated multistep synthesis in flow chemistry. Beilstein Journal of Organic Chemistry, 2018, 14, 648-658.	2.2	11
24	Advances in Continuous Flow Calorimetry. Organic Process Research and Development, 2022, 26, 267-277.	2.7	10
25	Room-temperature solid phase ionic liquid (RTSPIL) coated ω-transaminases: Development and application in organic solvents. Molecular Catalysis, 2018, 452, 11-19.	2.0	9
26	Optimization of a Catalytic Chemoenzymatic Tandem Reaction for the Synthesis of Natural Stilbenes in Continuous Flow. Catalysts, 2020, 10, 1404.	3.5	9
27	Tethered ansa-bridged titanium complexes immobilized on 3-mercaptopropyl-functionalized silica gel and their application for the hydrosilylation of imines. Dalton Transactions, 2012, 41, 12711.	3.3	8
28	The Plug & Play Reactor: A Highly Flexible Device for Heterogeneous Reactions in Continuous Flow. Chemie-Ingenieur-Technik, 2016, 88, 1518-1523.	0.8	8
29	Multistep synthesis of a valsartan precursor in continuous flow. Journal of Flow Chemistry, 2020, 10, 283-294.	1.9	8
30	Structureâ^'Functionâ^'Performance Relationship of Bis(cyclopentadienyl)-Based Group 4 Metallocenes: A DFT Study. Organometallics, 2008, 27, 5196-5202.	2.3	7
31	A Two-Step Method to Covalently Bind Biomolecules to Group-IV Semiconductors: Si(111)/1,2-Epoxy-9-decene/Esterase. Langmuir, 2008, 24, 13957-13961.	3.5	6
32	Development of a multistep reaction cascade for the synthesis of a sacubitril precursor in continuous flow. Journal of Flow Chemistry, 2020, 10, 259-270.	1.9	6
33	Coating of glass substrates to prevent alkali ion diffusion into pharmaceutical solutions. Surface and Coatings Technology, 2014, 258, 1249-1255.	4.8	5
34	Complete chiral resolution in a continuous flow crystallizer with recycle stream. Journal of Flow Chemistry, 2021, 11, 483-493.	1.9	5
35	Effect of Acetonitrileâ€Based Crystallization Conditions on the Crystal Quality ofÂVitaminÂD ₃ . Chemical Engineering and Technology, 2017, 40, 2016-2024.	1.5	5
36	Separation, Hydrodynamics and Heating Effects in Continuous Annular Electro-Chromatography (CAEC). Procedia Engineering, 2012, 42, 1611-1623.	1.2	3

#	Article	IF	CITATIONS
37	Inline monitoring of high ammonia concentrations in methanol with a customized 3D printed flow cell. Journal of Flow Chemistry, 2021, 11, 717-723.	1.9	3
38	Retention-time prediction for polycyclic aromatic compounds in reversed-phase capillary electro-chromatography. Journal of Molecular Modeling, 2015, 21, 124.	1.8	2
39	Comparison of Derivativeâ€Free Algorithms for their Applicability in Selfâ€Optimization of Chemical Processes. Chemistry Methods, 2022, 2, .	3.8	2
40	Development of an Integrated Continuous Crystallization Process of Vitamin D3. Chemie-Ingenieur-Technik, 2016, 88, 1213-1213.	0.8	1
41	Particle-loaded monolithic materials for separations via planar electrochromatography. Journal of Planar Chromatography - Modern TLC, 2016, 29, 15-21.	1.2	1
42	IPPE-TU Graz: green engineering inside and beyond the borders of process technology. Green Processing and Synthesis, 2015, 4, .	3.4	0
43	Mit ionischen Flüssigkeiten überzogene Transaminase für Biokatalyse in organischen Lösungsmitteln. Chemie-Ingenieur-Technik, 2016, 88, 1244-1244.	0.8	Ο