Javier Pérez-Carvajal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5705622/publications.pdf

Version: 2024-02-01

27 papers 1,323 citations

430874 18 h-index 26 g-index

27 all docs

27 docs citations

times ranked

27

2100 citing authors

#	Article	IF	CITATIONS
1	Thermal kinetics on adsorption heat transformation based on activated biocarbon and ethanol as working pairs. Materials Letters, 2022, 311, 131622.	2.6	1
2	Macroscopic Ultralight Aerogel Monoliths of Imineâ€based Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 13969-13977.	13.8	73
3	Macroscopic Ultralight Aerogel Monoliths of Imineâ€based Covalent Organic Frameworks. Angewandte Chemie, 2021, 133, 14088-14096.	2.0	5
4	In situ assembling of layered double hydroxide to magadiite layered silicate with enhanced photocatalytic and recycling performance. Applied Surface Science, 2021, 569, 151007.	6.1	9
5	Enzyme-Powered Porous Micromotors Built from a Hierarchical Micro- and Mesoporous UiO-Type Metal–Organic Framework. Journal of the American Chemical Society, 2020, 142, 20962-20967.	13.7	67
6	The Imineâ€Based COF TpPaâ€1 as an Efficient Cooling Adsorbent That Can Be Regenerated by Heat or Light. Advanced Energy Materials, 2019, 9, 1901535.	19.5	36
7	Switching acidic and basic catalysis through supramolecular functionalization in a porous 3D covalent imine-based material. Catalysis Science and Technology, 2019, 9, 6007-6014.	4.1	10
8	Interdiffusive Surfactant Procedure for the Preparation of Nanoarchitectured Porous Films: Application to the Growth of Titania Thin Films on Silicon Substrates. Langmuir, 2019, 35, 7169-7174.	3.5	1
9	A MOF@COF Composite with Enhanced Uptake through Interfacial Pore Generation. Angewandte Chemie - International Edition, 2019, 58, 9512-9516.	13.8	79
10	Titanosilicate-sepiolite hybrid nanoarchitectures for hydrogen technologies applications. Journal of Solid State Chemistry, 2019, 270, 287-294.	2.9	14
11	Aqueous production of spherical Zr-MOF beads <i>via</i> continuous-flow spray-drying. Green Chemistry, 2018, 20, 873-878.	9.0	59
12	Self-assembly of polyhedral metal–organic framework particles into three-dimensional ordered superstructures. Nature Chemistry, 2018, 10, 78-84.	13.6	298
13	A Selfâ€Folding Polymer Film Based on Swelling Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2018, 57, 15420-15424.	13.8	71
14	Metal Acetylacetonates as a Source of Metals for Aqueous Synthesis of Metal–Organic Frameworks. ACS Sustainable Chemistry and Engineering, 2018, 6, 14554-14560.	6.7	41
15	A CO ₂ optical sensor based on self-assembled metal–organic framework nanoparticles. Journal of Materials Chemistry A, 2018, 6, 13171-13177.	10.3	62
16	Confining Functional Nanoparticles into Colloidal Imineâ€Based COF Spheres by a Sequential Encapsulation–Crystallization Method. Chemistry - A European Journal, 2017, 23, 8623-8627.	3.3	58
17	Composite Salt in Porous Metalâ€Organic Frameworks for Adsorption Heat Transformation. Advanced Functional Materials, 2017, 27, 1606424.	14.9	95
18	Single-crystal and humidity-controlled powder diffraction study of the breathing effect in a metal–organic framework upon water adsorption/desorption. Chemical Communications, 2016, 52, 7229-7232.	4.1	15

#	Article	IF	CITATIONS
19	Switchable Surface Hydrophobicity–Hydrophilicity of a Metal–Organic Framework. Angewandte Chemie - International Edition, 2016, 55, 16049-16053.	13.8	76
20	A First Cyclodextrin-Transition Metal Coordination Polymer. Crystal Growth and Design, 2016, 16, 5598-5602.	3.0	20
21	Two-step synthesis of heterometallic coordination polymers using a polyazamacrocyclic linker. CrystEngComm, 2016, 18, 4196-4204.	2.6	9
22	TiO2-clay based nanoarchitectures for enhanced photocatalytic hydrogen production. Microporous and Mesoporous Materials, 2016, 222, 120-127.	4.4	30
23	Protein-Templated Biomimetic Silica Nanoparticles. Langmuir, 2015, 31, 3687-3695.	3.5	45
24	Graphene-Clay Based Nanomaterials for Clean Energy Storage. Science of Advanced Materials, 2014, 6, 151-158.	0.7	27
25	Clay-supported graphene materials: application to hydrogen storage. Physical Chemistry Chemical Physics, 2013, 15, 18635.	2.8	69
26	Nanoarchitectures Based on Layered Titanosilicates Supported on Glass Fibers: Application to Hydrogen Storage. Langmuir, 2013, 29, 7449-7455.	3.5	22
27	Layered titanosilicates JDF-L1 and AM-4 for biocide applications. Applied Clay Science, 2012, 56, 30-35.	5.2	31