
## Teresa Altabella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5705371/publications.pdf Version: 2024-02-01



TEDESA ALTABELLA

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Pseudomonas germanica sp. nov., isolated from Iris germanica rhizomes. International Journal of<br>Systematic and Evolutionary Microbiology, 2022, 72, .                                                                 | 0.8 | 4         |
| 2  | Structural and functional analysis of tomato sterol C22 desaturase. BMC Plant Biology, 2021, 21, 141.                                                                                                                    | 1.6 | 3         |
| 3  | Phytosterol metabolism in plant positive-strand RNA virus replication. Plant Cell Reports, 2021, , 1.                                                                                                                    | 2.8 | 3         |
| 4  | Inactivation of UDP-Clucose Sterol Glucosyltransferases Enhances Arabidopsis Resistance to Botrytis cinerea. Frontiers in Plant Science, 2019, 10, 1162.                                                                 | 1.7 | 17        |
| 5  | Identification and Characterization of Sterol Acyltransferases Responsible for Steryl Ester<br>Biosynthesis in Tomato. Frontiers in Plant Science, 2018, 9, 588.                                                         | 1.7 | 15        |
| 6  | Complex interplays between phytosterols and plastid development. Plant Signaling and Behavior, 2017, 12, e1387708.                                                                                                       | 1.2 | 4         |
| 7  | Emerging roles for conjugated sterols in plants. Progress in Lipid Research, 2017, 67, 27-37.                                                                                                                            | 5.3 | 161       |
| 8  | Tomato UDP-Glucose Sterol Glycosyltransferases: A Family of Developmental and Stress Regulated<br>Genes that Encode Cytosolic and Membrane-Associated Forms of the Enzyme. Frontiers in Plant<br>Science, 2017, 8, 984.  | 1.7 | 37        |
| 9  | Suppressing Farnesyl Diphosphate Synthase Alters Chloroplast Development and Triggers<br>Sterol-Dependent Induction of Jasmonate- and Fe-Related Responses. Plant Physiology, 2016, 172, 93-117.                         | 2.3 | 32        |
| 10 | Strategies and Methodologies for the Co-expression of Multiple Proteins in Plants. Advances in Experimental Medicine and Biology, 2016, 896, 263-285.                                                                    | 0.8 | 5         |
| 11 | Free polyamine and polyamine regulation during preâ€penetration and penetration resistance events in<br>oat against crown rust ( <i>Puccinia coronata</i> f. sp. <i>avenae</i> ). Plant Pathology, 2016, 65,<br>392-401. | 1.2 | 16        |
| 12 | Transcript profiling of jasmonateâ€elicited <i>Taxus</i> cells reveals a βâ€phenylalanine oA ligase. Plant<br>Biotechnology Journal, 2016, 14, 85-96.                                                                    | 4.1 | 41        |
| 13 | The roles of polyamines during the lifespan of plants: from development to stress. Planta, 2014, 240,<br>1-18.                                                                                                           | 1.6 | 343       |
| 14 | Sorbitol dehydrogenase is a cytosolic protein required for sorbitol metabolism in Arabidopsis<br>thaliana. Plant Science, 2013, 205-206, 63-75.                                                                          | 1.7 | 45        |
| 15 | Copper-containing amine oxidases contribute to terminal polyamine oxidation in peroxisomes and apoplast of Arabidopsis thaliana. BMC Plant Biology, 2013, 13, 109.                                                       | 1.6 | 134       |
| 16 | Polyamines under Abiotic Stress: Metabolic Crossroads and Hormonal Crosstalks in Plants.<br>Metabolites, 2012, 2, 516-528.                                                                                               | 1.3 | 142       |
| 17 | New insights into the role of spermine in Arabidopsis thaliana under long-term salt stress. Plant<br>Science, 2012, 182, 94-100.                                                                                         | 1.7 | 80        |
| 18 | Integration of polyamines in the cold acclimation response. Plant Science, 2011, 180, 31-38.                                                                                                                             | 1.7 | 140       |

TERESA ALTABELLA

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Arginine Decarboxylase expression, polyamines biosynthesis and reactive oxygen species during organogenic nodule formation in hop. Plant Signaling and Behavior, 2011, 6, 258-269.                     | 1.2 | 17        |
| 20 | Polyamine metabolic canalization in response to drought stress in Arabidopsis and the resurrection plant <i>Craterostigma plantagineum</i> . Plant Signaling and Behavior, 2011, 6, 243-250.           | 1.2 | 125       |
| 21 | Homeostatic control of polyamine levels under long-term salt stress in Arabidopsis. Plant Signaling and Behavior, 2011, 6, 237-242.                                                                    | 1.2 | 7         |
| 22 | Putrescine accumulation in Arabidopsis thaliana transgenic lines enhances tolerance to dehydration and freezing stress. Plant Signaling and Behavior, 2011, 6, 278-286.                                | 1.2 | 78        |
| 23 | Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants over-expressing the homologous Arginine decarboxylase 2 gene. Plant Physiology and Biochemistry, 2010, 48, 547-552. | 2.8 | 178       |
| 24 | Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta, 2010, 231, 1237-1249.                                                                                       | 1.6 | 931       |
| 25 | Putrescine as a signal to modulate the indispensable ABA increase under cold stress. Plant Signaling and Behavior, 2009, 4, 219-220.                                                                   | 1.2 | 61        |
| 26 | Putrescine Is Involved in Arabidopsis Freezing Tolerance and Cold Acclimation by Regulating Abscisic<br>Acid Levels in Response to Low Temperature. Plant Physiology, 2008, 148, 1094-1105.            | 2.3 | 360       |
| 27 | Promoter DNA Hypermethylation and Gene Repression in Undifferentiated Arabidopsis Cells. PLoS ONE, 2008, 3, e3306.                                                                                     | 1.1 | 99        |
| 28 | Abscisic acid modulates polyamine metabolism under water stress in Arabidopsis thaliana. Physiologia<br>Plantarum, 2006, 128, 448-455.                                                                 | 2.6 | 160       |
| 29 | Involvement of polyamines in plant response to abiotic stress. Biotechnology Letters, 2006, 28, 1867-1876.                                                                                             | 1.1 | 503       |
| 30 | Consistency of Polyamine Profiles and Expression of Arginine Decarboxylase in Mitosis during Zygotic<br>Embryogenesis of Scots Pine. Plant Physiology, 2006, 142, 1027-1038.                           | 2.3 | 43        |
| 31 | Overexpression of ADC2 in Arabidopsis induces dwarfism and late-flowering through GA deficiency.<br>Plant Journal, 2005, 43, 425-436.                                                                  | 2.8 | 132       |
| 32 | Localization of arginine decarboxylase in tobacco plants. Physiologia Plantarum, 2004, 120, 84-92.                                                                                                     | 2.6 | 78        |
| 33 | A Polyamine Metabolon Involving Aminopropyl Transferase Complexes in Arabidopsis. Plant Cell, 2002,<br>14, 2539-2551.                                                                                  | 3.1 | 159       |
| 34 | Effects of putrescine accumulation in tobacco transgenic plants with different expression levels of oat arginine decarboxylase. Physiologia Plantarum, 2002, 114, 281-287.                             | 2.6 | 32        |
| 35 | Molecular forms of arginine decarboxylase in oat leaves. Physiologia Plantarum, 2000, 108, 370-375.                                                                                                    | 2.6 | 7         |
| 36 | Polyamine metabolism and its regulation. Physiologia Plantarum, 1997, 100, 664-674.                                                                                                                    | 2.6 | 15        |

TERESA ALTABELLA

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Plant Polyamines in Reproductive Activity and Response to Abiotic Stress*. Botanica Acta, 1997, 110, 197-207.                                                                                   | 1.6 | 218       |
| 38 | Recent advances in polyamine research. Trends in Plant Science, 1997, 2, 124-130.                                                                                                               | 4.3 | 368       |
| 39 | Polyamine metabolism and its regulation. Physiologia Plantarum, 1997, 100, 664-674.                                                                                                             | 2.6 | 190       |
| 40 | Inducible overexpression of oat arginine decarboxylase in transgenic tobacco plants. Plant Journal, 1997, 11, 465-473.                                                                          | 2.8 | 129       |
| 41 | Regulation of arginine decarboxylase by spermine in osmotically-stressed oat leaves. Physiologia<br>Plantarum, 1996, 98, 105-110.                                                               | 2.6 | 54        |
| 42 | Growth and tropane alkaloid production inAgrobacterium transformed roots and derived callus ofDatura. Biologia Plantarum, 1995, 37, 161-168.                                                    | 1.9 | 19        |
| 43 | Arginine Decarboxylase Is Localized in Chloroplasts. Plant Physiology, 1995, 109, 771-776.                                                                                                      | 2.3 | 123       |
| 44 | Slow-Growth Phenotype of Transgenic Tomato Expressing Apoplastic Invertase. Plant Physiology, 1991,<br>95, 420-425.                                                                             | 2.3 | 148       |
| 45 | Characterization of α-Amylase-Inhibitor, a Lectin-Like Protein in the Seeds of <i>Phaseolus vulgaris</i> .<br>Plant Physiology, 1990, 92, 703-709.                                              | 2.3 | 68        |
| 46 | Tobacco Plants Transformed with the Bean αai Gene Express an Inhibitor of Insect α-Amylase in Their<br>Seeds. Plant Physiology, 1990, 93, 805-810.                                              | 2.3 | 87        |
| 47 | Effect of auxin concentration and growth phase on the plasma membrane H+-ATPase of tobacco calli.<br>Plant Science, 1990, 70, 209-214.                                                          | 1.7 | 32        |
| 48 | Auxin-induced Regulation of Amino Acid and Putrescine in the Free State and Nicotine Content in<br>Cultured Tobacco Callus. Journal of Plant Physiology, 1987, 128, 153-159.                    | 1.6 | 9         |
| 49 | Effect of salinity on soluble protein, free amino acids and nicotine contents inNicotiana rustica L<br>Plant and Soil, 1987, 102, 55-60.                                                        | 1.8 | 51        |
| 50 | Effects of the growth regulator 4PU-30 on growth, K+ content, and alkaloid production in tobacco callus cultures. Journal of Plant Growth Regulation, 1987, 5, 183-189.                         | 2.8 | 4         |
| 51 | Correlation between K+ content, activities of arginine and ornithine decarboxylase, and levels of putrescine and nicotine in cultured tobacco callus. Physiologia Plantarum, 1987, 69, 221-226. | 2.6 | 6         |
| 52 | Effect of auxin on alkaloids, K+ and free amino acid content in cultured tobacco callus. Physiologia<br>Plantarum, 1985, 65, 299-304.                                                           | 2.6 | 18        |