José Verdejo Araya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5704581/publications.pdf

Version: 2024-02-01

		1163117	1125743	
13	196	8	13	
papers	citations	h-index	g-index	
13	13	13	218	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Microbial responses are unreliable indicators of copper ecotoxicity in soils contaminated by mining activities. Chemosphere, 2022, 300, 134517.	8.2	6
2	Zinc Alleviates Copper Toxicity to Lettuce and Oat in Copper-Contaminated Soils. Journal of Soil Science and Plant Nutrition, 2021, 21, 1229-1235.	3.4	16
3	Transcriptome Analysis of Seed Weight Plasticity in Brassica napus. International Journal of Molecular Sciences, 2021, 22, 4449.	4.1	6
4	Fitoextracción de metales desde suelos contaminados: ¿Oportunidad o utopÃa?. Agro Sur, 2021, 49, 1-4.	0.2	2
5	Plasticity of seed weight in winter and spring rapeseed is higher in a narrow but different window after flowering. Field Crops Research, 2020, 250, 107777.	5.1	10
6	The effect of four calciumâ€based amendments on soil aggregate stability of two sandy topsoils. Journal of Plant Nutrition and Soil Science, 2019, 182, 159-166.	1.9	10
7	Zinc alleviates copper toxicity to symbiotic nitrogen fixation in agricultural soil affected by copper mining in central Chile. Chemosphere, 2018, 209, 960-963.	8.2	19
8	Advances on the determination of thresholds of Cu phytotoxicity in field-contaminated soils in central Chile. Environmental Pollution, 2017, 223, 146-152.	7.5	26
9	Proposed modification to avoidance test with Eisenia fetida to assess metal toxicity in agricultural soils affected by mining activities. Ecotoxicology and Environmental Safety, 2017, 140, 230-234.	6.0	19
10	Nitrification and nitrogen mineralization in agricultural soils contaminated by copper mining activities in Central Chile. Journal of Soil Science and Plant Nutrition, 2017, , 0-0.	3.4	3
11	Thresholds of copper toxicity to lettuce in field-collected agricultural soils exposed to copper mining activities in Chile. Journal of Soil Science and Plant Nutrition, 2016, , 0-0.	3.4	8
12	Thresholds of copper phytotoxicity in field-collected agricultural soils exposed to copper mining activities in Chile. Ecotoxicology and Environmental Safety, 2015, 122, 171-177.	6.0	44
13	Thresholds of arsenic toxicity to Eisenia fetida in field-collected agricultural soils exposed to copper mining activities in Chile. Ecotoxicology and Environmental Safety, 2015, 122, 448-454.	6.0	27