Siegfried Hapfelmeier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5704524/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Production of germ-free mosquitoes via transient colonisation allows stage-specific investigation of host–microbiota interactions. Nature Communications, 2021, 12, 942.	5.8	50
2	Plant chemistry and food web health. New Phytologist, 2021, 231, 957-962.	3.5	4
3	Robust microbe immune recognition in the intestinal mucosa. Genes and Immunity, 2021, 22, 268-275.	2.2	5
4	A protocol for generating germ-free Heligmosomoides polygyrus bakeri larvae for gnotobiotic helminth infection studies. STAR Protocols, 2021, 2, 100946.	0.5	1
5	Biogeography of microbial bile acid transformations along the murine gut. Journal of Lipid Research, 2020, 61, 1450-1463.	2.0	61
6	Memory CD8+ T Cells Balance Pro- and Anti-inflammatory Activity by Reprogramming Cellular Acetate Handling at Sites of Infection. Cell Metabolism, 2020, 32, 457-467.e5.	7.2	37
7	Mucosal or systemic microbiota exposures shape the BÂcell repertoire. Nature, 2020, 584, 274-278.	13.7	132
8	Paneth cells promote angiogenesis and regulate portal hypertensionÂin response to microbial signals. Journal of Hepatology, 2020, 73, 628-639.	1.8	16
9	Engineering bacterial symbionts of nematodes improves their biocontrol potential to counter the western corn rootworm. Nature Biotechnology, 2020, 38, 600-608.	9.4	27
10	Uncoupling of invasive bacterial mucosal immunogenicity from pathogenicity. Nature Communications, 2020, 11, 1978.	5.8	14
11	Respiratory tissue-associated commensal bacteria offer therapeutic potential against pneumococcal colonization. ELife, 2020, 9, .	2.8	22
12	Outrunning Salmonella – the role of endogenous Enterobacteriaceae in variable colonization resistance. Lab Animal, 2019, 48, 203-204.	0.2	2
13	<i>In vitro</i> and <i>in vivo</i> characterization of <i>Clostridium scindens</i> bile acid transformations. Gut Microbes, 2019, 10, 481-503.	4.3	70
14	Antibodies Set Boundaries Limiting Microbial Metabolite Penetration and the Resultant Mammalian Host Response. Immunity, 2018, 49, 545-559.e5.	6.6	121
15	The ESRP1-GPR137 axis contributes to intestinal pathogenesis. ELife, 2017, 6, .	2.8	24
16	Innate immunity restricts Citrobacter rodentium A/E pathogenesis initiation to an early window of opportunity. PLoS Pathogens, 2017, 13, e1006476.	2.1	17
17	Functional Intestinal Bile Acid 7α-Dehydroxylation by Clostridium scindens Associated with Protection from Clostridium difficile Infection in a Gnotobiotic Mouse Model. Frontiers in Cellular and Infection Microbiology, 2016, 6, 191.	1.8	151
18	Peracetic Acid Treatment Generates Potent Inactivated Oral Vaccines from a Broad Range of Culturable Bacterial Species. Frontiers in Immunology, 2016, 7, 34.	2.2	39

SIEGFRIED HAPFELMEIER

#	Article	IF	CITATIONS
19	Memory CD8 + T Cells Require Increased Concentrations of Acetate Induced by Stress for Optimal Function. Immunity, 2016, 44, 1312-1324.	6.6	257
20	The maternal microbiota drives early postnatal innate immune development. Science, 2016, 351, 1296-1302.	6.0	871
21	D-Alanine-Controlled Transient Intestinal Mono-Colonization with Non-Laboratory-Adapted Commensal E. coli Strain HS. PLoS ONE, 2016, 11, e0151872.	1.1	9
22	Gut Microbiota Orchestrates Energy Homeostasis during Cold. Cell, 2015, 163, 1360-1374.	13.5	581
23	Microbiota depletion promotes browning of white adipose tissue and reduces obesity. Nature Medicine, 2015, 21, 1497-1501.	15.2	324
24	The Liver May Act as a Firewall Mediating Mutualism Between the Host and Its Gut Commensal Microbiota. Science Translational Medicine, 2014, 6, 237ra66.	5.8	365
25	Microbiota-Derived Compounds Drive Steady-State Granulopoiesis via MyD88/TICAM Signaling. Journal of Immunology, 2014, 193, 5273-5283.	0.4	202
26	Functional Flexibility of Intestinal IgA – Broadening the Fine Line. Frontiers in Immunology, 2012, 3, 100.	2.2	86
27	Acquisition of a multifunctional IgA+ plasma cell phenotype in the gut. Nature, 2012, 481, 199-203.	13.7	177
28	The habitat, double life, citizenship, and forgetfulness of IgA. Immunological Reviews, 2012, 245, 132-146.	2.8	105
29	Intestinal Bacterial Colonization Induces Mutualistic Regulatory T Cell Responses. Immunity, 2011, 34, 794-806.	6.6	749
30	Like Will to Like: Abundances of Closely Related Species Can Predict Susceptibility to Intestinal Colonization by Pathogenic and Commensal Bacteria. PLoS Pathogens, 2010, 6, e1000711.	2.1	367
31	In remembrance of commensal intestinal microbes. Communicative and Integrative Biology, 2010, 3, 569-571.	0.6	4
32	Reversible Microbial Colonization of Germ-Free Mice Reveals the Dynamics of IgA Immune Responses. Science, 2010, 328, 1705-1709.	6.0	657
33	Innate and Adaptive Immunity Cooperate Flexibly to Maintain Host-Microbiota Mutualism. Science, 2009, 325, 617-620.	6.0	443
34	Microbe sampling by mucosal dendritic cells is a discrete, MyD88-independent stepin Δ <i>invG S</i> . Typhimurium colitis. Journal of Experimental Medicine, 2008, 205, 437-450.	4.2	164
35	The armed truce between the intestinal microflora and host mucosal immunity. Seminars in Immunology, 2007, 19, 57-58.	2.7	7
36	Virulence of Broad- and Narrow-Host-Range Salmonella enterica Serovars in the Streptomycin-PretreatedMouse Model. Infection and Immunity, 2006, 74, 632-644.	1.0	58

#	Article	IF	CITATIONS
37	The Salmonella Pathogenicity Island (SPI)-2 and SPI-1 Type III Secretion Systems Allow <i>Salmonella</i> Serovar <i>typhimurium</i> to Trigger Colitis via MyD88-Dependent and MyD88-Independent Mechanisms. Journal of Immunology, 2005, 174, 1675-1685.	0.4	344
38	Comparison of Salmonella enterica Serovar Typhimurium Colitis in Germfree Mice and Mice Pretreated with Streptomycin. Infection and Immunity, 2005, 73, 3228-3241.	1.0	136
39	A mouse model for S. typhimurium-induced enterocolitis. Trends in Microbiology, 2005, 13, 497-503.	3.5	167
40	Flagella and Chemotaxis Are Required for Efficient Induction of Salmonella enterica Serovar Typhimurium Colitis in Streptomycin-Pretreated Mice. Infection and Immunity, 2004, 72, 4138-4150.	1.0	305
41	Role of the Salmonella Pathogenicity Island 1 Effector Proteins SipA, SopB, SopE, and SopE2 in Salmonella enterica Subspecies 1 Serovar Typhimurium Colitis in Streptomycin-Pretreated Mice. Infection and Immunity, 2004, 72, 795-809.	1.0	202
42	InvB Is Required for Type III-Dependent Secretion of SopA in Salmonella enterica Serovar Typhimurium. Journal of Bacteriology, 2004, 186, 1215-1219.	1.0	48
43	Pretreatment of Mice with Streptomycin Provides a Salmonella enterica Serovar Typhimurium Colitis Model That Allows Analysis of Both Pathogen and Host. Infection and Immunity, 2003, 71, 2839-2858.	1.0	864
44	Elevated Temperature Differentially Affects Virulence, VirB Protein Accumulation, and T-Pilus Formation in Different Agrobacterium tumefaciens and Agrobacterium vitis Strains. Journal of Bacteriology, 2001, 183, 6852-6861.	1.0	81
45	VirB6 Is Required for Stabilization of VirB5 and VirB3 and Formation of VirB7 Homodimers in Agrobacterium tumefaciens. Journal of Bacteriology, 2000, 182, 4505-4511.	1.0	73