Mark Stradiotto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5704390/publications.pdf

Version: 2024-02-01

148 papers 6,268 citations

43 h-index 70 g-index

207 all docs

207 docs citations

times ranked

207

4495 citing authors

#	Article	IF	CITATIONS
1	A P,Nâ€Ligand for Palladiumâ€Catalyzed Ammonia Arylation: Coupling of Deactivated Aryl Chlorides, Chemoselective Arylations, and Room Temperature Reactions. Angewandte Chemie - International Edition, 2010, 49, 4071-4074.	7.2	260
2	Addressing Challenges in Palladiumâ€Catalyzed Crossâ€Coupling Reactions Through Ligand Design. Chemistry - A European Journal, 2012, 18, 9758-9769.	1.7	218
3	Rhodium―and Iridium atalyzed Hydroamination of Alkenes. ChemCatChem, 2010, 2, 1192-1207.	1.8	199
4	A Highly Versatile Catalyst System for the Crossâ€Coupling of Aryl Chlorides and Amines. Chemistry - A European Journal, 2010, 16, 1983-1991.	1.7	175
5	Transitionâ€Metal atalyzed Trifluoromethylation of Aryl Halides. Angewandte Chemie - International Edition, 2010, 49, 9322-9324.	7.2	172
6	Stereo- and Regioselective Gold-Catalyzed Hydroamination of Internal Alkynes with Dialkylamines. Journal of the American Chemical Society, 2010, 132, 18026-18029.	6.6	171
7	Palladiumâ€Catalyzed Crossâ€Coupling of Aryl Chlorides and Tosylates with Hydrazine. Angewandte Chemie - International Edition, 2010, 49, 8686-8690.	7.2	149
8	[Ir(COD)Cl] ₂ as a Catalyst Precursor for the Intramolecular Hydroamination of Unactivated Alkenes with Primary Amines and Secondary Alkyl- or Arylamines: A Combined Catalytic, Mechanistic, and Computational Investigation. Journal of the American Chemical Society, 2010, 132, 413-426.	6.6	145
9	Challenging nickel-catalysed amine arylations enabled by tailored ancillary ligand design. Nature Communications, 2016, 7, 11073.	5.8	145
10	Palladium-Catalyzed Mono- \hat{l} ±-arylation of Acetone with Aryl Halides and Tosylates. Journal of the American Chemical Society, 2011, 133, 5194-5197.	6.6	142
11	BippyPhos: A Single Ligand With Unprecedented Scope in the Buchwald–Hartwig Amination of (Hetero)aryl Chlorides. Chemistry - A European Journal, 2013, 19, 16760-16771.	1.7	126
12	Bisphosphines: A Prominent Ancillary Ligand Class for Application in Nickel-Catalyzed C–N Cross-Coupling. ACS Catalysis, 2018, 8, 7228-7250.	5.5	112
13	(<i>N</i> -Phosphinoamidinate)Iron Pre-Catalysts for the Room Temperature Hydrosilylation of Carbonyl Compounds with Broad Substrate Scope at Low Loadings. Organometallics, 2013, 32, 5581-5588.	1.1	110
14	Nickelâ€Catalyzed Monoarylation of Ammonia. Angewandte Chemie - International Edition, 2015, 54, 3773-3777.	7.2	100
15	A Formally Zwitterionic Ruthenium Catalyst Precursor for the Transfer Hydrogenation of Ketones that Does Not Feature an Ancillary Ligand NH Functionality. Angewandte Chemie - International Edition, 2007, 46, 4732-4735.	7.2	99
16	Addressing Challenges in Palladiumâ€Catalyzed Crossâ€Couplings of Aryl Mesylates: Monoarylation of Ketones and Primary Alkyl Amines. Angewandte Chemie - International Edition, 2013, 52, 7242-7246.	7.2	90
17	Exploiting Ancillary Ligation To Enable Nickel-Catalyzed C–O Cross-Couplings of Aryl Electrophiles with Aliphatic Alcohols. Journal of the American Chemical Society, 2018, 140, 5023-5027.	6.6	90
18	Intramolecular Hydroamination of Unactivated Alkenes with Secondary Alkyl- and Arylamines Employing [Ir(COD)Cl] ₂ as a Catalyst Precursor. Organic Letters, 2009, 11, 1449-1452.	2.4	86

#	Article	IF	CITATIONS
19	A Manganese Preâ€Catalyst: Mild Reduction of Amides, Ketones, Aldehydes, and Esters. Angewandte Chemie - International Edition, 2017, 56, 15901-15904.	7.2	84
20	Zwitterionic Relatives of Cationic Platinum Group Metal Complexes: Applications in Stoichiometric and Catalytic $\ddot{l}f\hat{a}\in B$ ond Activation. Angewandte Chemie - International Edition, 2010, 49, 494-512.	7.2	66
21	An Examination of the Palladium/Morâ€DalPhos Catalyst System in the Context of Selective Ammonia Monoarylation at Room Temperature. Chemistry - A European Journal, 2013, 19, 2131-2141.	1.7	66
22	PAd2â€DalPhos Enables the Nickelâ€Catalyzed Câ^'N Crossâ€Coupling of Primary Heteroarylamines and (Hetero)aryl Chlorides. Angewandte Chemie - International Edition, 2019, 58, 6391-6395.	7.2	64
23	Cobalt- and Iron-Catalyzed Isomerization–Hydroboration of Branched Alkenes: Terminal Hydroboration with Pinacolborane and 1,3,2-Diazaborolanes. Organometallics, 2017, 36, 417-423.	1.1	63
24	Palladium-catalyzed synthesis of indoles via ammonia cross-coupling–alkyne cyclization. Chemical Communications, 2011, 47, 6936.	2.2	62
25	(<i>N</i> â€Phosphinoamidinate)cobaltâ€Catalyzed Hydroboration: Alkene Isomerization Affords Terminal Selectivity. Chemistry - A European Journal, 2014, 20, 13918-13922.	1.7	62
26	Rational and Predictable Chemoselective Synthesis of Oligoamines via Buchwald–Hartwig Amination of (Hetero)Aryl Chlorides Employing Mor-DalPhos. Journal of Organic Chemistry, 2012, 77, 1056-1071.	1.7	61
27	Pd ₂ dba ₃ /Bippyphos: A Robust Catalyst System for the Hydroxylation of Aryl Halides with Broad Substrate Scope. Advanced Synthesis and Catalysis, 2013, 355, 981-987.	2.1	59
28	New Cationic and Zwitterionic Cp*M(\hat{I}^2 2-P,S) Complexes (M = Rh, Ir): Divergent Reactivity Pathways Arising from Alternative Modes of Ancillary Ligand Participation in Substrate Activation. Journal of the American Chemical Society, 2008, 130, 16394-16406.	6.6	58
29	PhPAdâ€DalPhos: Ligandâ€Enabled, Nickelâ€Catalyzed Crossâ€Coupling of (Hetero)aryl Electrophiles with Bulky Primary Alkylamines. Angewandte Chemie - International Edition, 2019, 58, 2485-2489.	7.2	58
30	A Catalytically Active, Charge-Neutral Rh(I) Zwitterion Featuring a P,N-Substituted "Naked―Indenide Ligand. Journal of the American Chemical Society, 2003, 125, 5618-5619.	6.6	56
31	Neutral, Cationic, and Zwitterionic Ruthenium(II) Atom Transfer Radical Addition Catalysts Supported by P,N-Substituted Indene or Indenide Ligands. Organometallics, 2008, 27, 254-258.	1.1	55
32	Iridium(iii) complexes of the new tridentate bis(8-quinolyl)silyl (â€~NSiN') ligand. Chemical Communications, 2001, , 1200-1201.	2.2	54
33	Cationic and Formally Zwitterionic Rhodium(I) and Iridium(I) Derivatives of a P,N-Substituted Indene:Â A Comparative Synthetic, Structural, and Catalytic Investigation. Organometallics, 2007, 26, 594-608.	1.1	51
34	Nickelâ€Catalyzed Nâ€Arylation of Primary Amides and Lactams with Activated (Hetero)aryl Electrophiles. Chemistry - A European Journal, 2016, 22, 18752-18755.	1.7	51
35	Bisphosphineâ€Ligated Nickel Preâ€catalysts in C(<i>sp</i> ²)â€"N Crossâ€Couplings of Aryl Chlorides: A Comparison of Nickel(I) and Nickel(II). Advanced Synthesis and Catalysis, 2017, 359, 2972-2980.	2.1	51
36	New Phosphine-Functionalized NHC Ligands: Discovery of an Effective Catalyst for the Room-Temperature Amination of Aryl Chlorides with Primary and Secondary Amines. Organometallics, 2013, 32, 6148-6161.	1.1	50

#	Article	IF	CITATIONS
37	Nickel-Catalyzed C–N Cross-Coupling of Ammonia, (Hetero)anilines, and Indoles with Activated (Hetero)aryl Chlorides Enabled by Ligand Design. ACS Catalysis, 2019, 9, 9292-9297.	5.5	50
38	Nickelâ€Catalyzed Crossâ€Coupling of Sulfonamides With (Hetero)aryl Chlorides. Angewandte Chemie - International Edition, 2020, 59, 8952-8956.	7.2	49
39	Silver-catalyzed hydrosilylation of aldehydes. Chemical Communications, 2006, , 4104.	2.2	46
40	Evaluating 1,1′-Bis(phosphino)ferrocene Ancillary Ligand Variants in the Nickel-Catalyzed C–N Cross-Coupling of (Hetero)aryl Chlorides. Organometallics, 2017, 36, 679-686.	1.1	46
41	An electrochemical and spectroelectrochemical (IR) investigation of the reduction of RCo(II)TPP (R=benzyl or butyl; TPP=tetraphenylporphyrin): mechanistic implications in the CoTPP catalyzed electrocarboxylation of alkyl halides. Journal of Electroanalytical Chemistry, 1998, 453, 79-88.	1.9	45
42	Rapid Ketone Transfer Hydrogenation by Employing Simple, In Situ Prepared Iridium(I) Precatalysts Supported by "Nonâ€NH―P,N Ligands. Chemistry - A European Journal, 2008, 14, 10388-10395.	1.7	45
43	Probing Mesitylborane and Mesitylborate Ligation Within the Coordination Sphere of Cp*Ru(P ^{<i>i>i</i>cp*Ru(P^{<i>i>i</i>cp*Ru(P^{<i) (note:="" note:="" note:<="" td=""><td>1.9</td><td>45</td></i)>}}}	1.9	45
44	Coordinatively Unsaturated Cationic and Zwitterionic [Cp*Ru(κ2-P,N)] Complexes: Ligand-Assisted Double-Geminal CH Bond Activation and Reversible α-H Elimination at Ruthenium. Angewandte Chemie - International Edition, 2005, 44, 3603-3606.	7.2	42
45	Silylene Extrusion from Organosilanes via Double Geminal Siâ^'H Bond Activation by a Cp*Ru(κ ² - <i>P)(i>,<i>N</i>)(sup>+ Complex:  Observation of a Key Stoichiometric Step in the Glaserâ^'Tilley Alkene Hydrosilylation Mechanism. Journal of the American Chemical Society, 2007. 129. 15855-15864.</i>	6.6	41
46	Nickel-Catalyzed $\langle i \rangle N \langle i \rangle$ -Arylation of Cyclopropylamine and Related Ammonium Salts with (Hetero)aryl (Pseudo)halides at Room Temperature. ACS Catalysis, 2017, 7, 6048-6059.	5.5	41
47	Rhodium Complexes Containing a Tridentate Bis(8-quinolyl)methylsilyl Ligand:  Synthesis and Reactivity. Organometallics, 2006, 25, 1607-1617.	1.1	38
48	Catalytic Alkene Hydroboration Mediated by Cationic and Formally Zwitterionic Rhodium(I) and Iridium(I) Derivatives of a P,N-Substituted Indene. Organometallics, 2006, 25, 5965-5968.	1.1	38
49	Buchwald–Hartwig Amination of (Hetero)aryl Chlorides by Employing Morâ€DalPhos under Aqueous and Solventâ€Free Conditions. European Journal of Organic Chemistry, 2012, 2012, 3972-3977.	1.2	38
50	Alkene Isomerizationâ€"Hydroboration Catalyzed by First-Row Transition-Metal (Mn, Fe, Co, and Ni) ⟨i⟩N⟨/i⟩-Phosphinoamidinate Complexes: Origin of Reactivity and Selectivity. ACS Catalysis, 2018, 8, 9907-9925.	5.5	38
51	Synthesis and Characterization of a Cationic Ruthenium Complex Featuring an Unusual Bis(Î-2-BH) Monoborane Ligand. Inorganic Chemistry, 2008, 47, 7471-7473.	1.9	37
52	A Selective Palladiumâ€Catalyzed Carbonylative Arylation of Aryl Ketones to Give Vinylbenzoate Compounds. Chemistry - A European Journal, 2012, 18, 15592-15597.	1.7	37
53	A Comparative Reactivity Survey of Some Prominent Bisphosphine Nickel(II) Precatalysts in C–N Cross-Coupling. Organometallics, 2016, 35, 3248-3254.	1.1	37
54	Homo- and Cross-[2+2]-Cycloaddition of 1,1-Diphenylsilene and 1,1-Diphenylgermene. Absolute Rate Constants for Dimerization and the Molecular Structures and Photochemistry of the Resulting 1,3-Dimetallacyclobutanes. Organometallics, 1999, 18, 5643-5652.	1.1	35

#	Article	IF	CITATIONS
55	Probing the Dynamics and Reactivity of a Stereochemically Nonrigid Cp*Ru(H)(β ² - <i>P</i> , <i>C</i> arbene) Complex. Organometallics, 2009, 28, 74-83.	1.1	35
56	Platinum-Catalyzed Alkene Cyclohydroamination: Evaluating the Utility of Bidentate P,N/P,P Ligation and Phosphine-Free Catalyst Systems. Organometallics, 2010, 29, 6125-6128.	1.1	32
57	Efficient palladium-catalyzed synthesis of substituted indoles employing a new (silanyloxyphenyl)phosphine ligand. Chemical Communications, 2012, 48, 7277.	2.2	32
58	Palladiumâ€Catalysed Carbonylative αâ€Arylation of Acetone and Acetophenones to 1,3â€Diketones. Chemistry - A European Journal, 2013, 19, 12624-12628.	1.7	32
59	New bidentate cationic and zwitterionic relatives of Crabtree's hydrogenation catalyst. Chemical Communications, 2005, , 4932.	2.2	31
60	Exploring the Influence of Ancillary Ligand Charge and Geometry on the Properties of New Coordinatively Unsaturated Cp*(ΰ2-P,N)Ru+Complexes: Linkage Isomerism, Double Câ^'H Bond Activation, and Reversible α-Hydride Elimination. Organometallics, 2005, 24, 4981-4994.	1.1	31
61	Aminocarbonylation of (Hetero)aryl Bromides with Ammonia and Amines using a Palladium/DalPhos Catalyst System. Advanced Synthesis and Catalysis, 2012, 354, 3065-3070.	2.1	31
62	A Comparative Ancillary Ligand Survey in Palladiumâ€Catalyzed C–O Crossâ€Coupling of Primary and Secondary Aliphatic Alcohols. European Journal of Organic Chemistry, 2016, 2016, 2444-2449.	1.2	31
63	Nickel-Catalyzed Cross-Coupling of Ammonia or Primary Alkylamines with (Hetero)aryl Sulfamates, Carbamates, or Pivalates. Synlett, 2017, 28, 1652-1656.	1.0	31
64	Palladiumâ€Catalyzed Monoâ€Î±â€arylation of Carbonylâ€Containing Compounds with Aryl Halides using DalPhos Ligands. European Journal of Organic Chemistry, 2012, 2012, 6042-6050.	1.2	29
65	Rhodium Acetylacetonate and Iron Tricarbonyl Complexes of Tetracyclone and 3-Ferrocenyl-2,4,5-triphenylcyclopentadienone:  An X-ray Crystallographic and NMR Study. Organometallics, 2000, 19, 184-191.	1.1	28
66	Au(I) Complexes Supported by Donor-Functionalized Indene Ligands:Â Synthesis, Characterization, and Catalytic Behavior in Aldehyde Hydrosilylation. Organometallics, 2007, 26, 1069-1076.	1.1	28
67	The Fluxional Character of (η5-C5H5)Fe(CO)2(η1-C9H7): Evidence for the [4 + 2] Cycloaddition of a Metal-Substituted Isoindene with Tetracyanoethylene. Organometallics, 1997, 16, 5563-5568.	1.1	27
68	Exploring the reactivity of a coordinatively unsaturated Cp*Ru(\hat{l}^2 2-P,O) complex with small molecule substrates: application in Eâ \in "H bond activation (E = H, B, and Si). Dalton Transactions, 2009, , 4756.	1.6	27
69	Palladiumâ€Catalyzed Monoâ€Î±â€arylation of Acetone at Room Temperature. Chemistry - A European Journal, 2015, 21, 11006-11009.	1.7	27
70	Application of Diazaphospholidine/Diazaphospholene-Based Bisphosphines in Room-Temperature Nickel-Catalyzed C(sp ²)–N Cross-Couplings of Primary Alkylamines with (Hetero)aryl Chlorides and Bromides. ACS Catalysis, 2018, 8, 5328-5339.	5.5	26
71	Multidimensional NMR Study of Tris(indenyl)methylsilane:  Molecular Dynamics Mapped onto a Hypercube. Organometallics, 1996, 15, 5645-5652.	1.1	25
72	Neutral and Cationic Platinum(II) Complexes Supported by a P,N-Functionalized Indene Ligand:Â Structural and Reactivity Comparisons with a Related Gold(III) Zwitterion. Organometallics, 2006, 25, 1028-1035.	1.1	25

#	Article	IF	CITATIONS
73	Exploring the Utility of Neutral Rhodium and Iridium \hat{I}^2 -P,O and \hat{I}^2 -P(S),O Complexes as Catalysts for Alkene Hydrogenation and Hydrosilylation. Organometallics, 2007, 26, 5430-5437.	1.1	25
74	Nickelâ€Catalyzed Nâ€Arylation of Fluoroalkylamines. Angewandte Chemie - International Edition, 2021, 60, 4080-4084.	7.2	24
75	Generation and Reactivity of {(Ethane-1,2-diyl)bis[diisopropylphosphine-κP]}-{[2,4,6-tri(tert-butyl)phenyl]phosphino-κP}rhodium ([Rh{PH(tBu3C6H2)}(iPr2PCH2CH2PiPr2)]): Catalytic Câ^'P Bond Formationvia Intramolecular Câ^'H/Pâ^'H Dehydrogenative Cross-Coupling, Helvetica Chimica Acta. 2001. 84. 2958-2970.	1.0	23
76	Oligo(alkynylsilanes):  Templates for Organometallic Polymers. Organometallics, 1997, 16, 5048-5057.	1.1	22
77	Probing the Effect of Organic and Organometallic Functionalization on [1,5]-Silicon Shifts in Indenylsilanes. Organometallics, 2000, 19, 590-601.	1.1	21
78	Divergent Isomerization Behavior and Rhodium(I) Coordination Chemistry of Indenyl Ligands Bearing either One or Two Pnictogen Donor Fragments. Organometallics, 2003, 22, 5185-5192.	1.1	21
79	Rh(I) and Ir(I) Derivatives of a P(S),N-Substituted Indene Ligand:  Synthetic, Structural, and Catalytic Alkene Hydrosilylation Studies. Inorganic Chemistry, 2006, 45, 4562-4570.	1.9	21
80	Synthesis of tetra-substituted 5-trifluoromethylpyrazoles via sequential halogenation/palladium-catalyzed C–C and C–N cross-coupling. Organic and Biomolecular Chemistry, 2016, 14, 2352-2359.	1.5	21
81	PAd2â€DalPhos Enables the Nickelâ€Catalyzed Câ^'N Crossâ€Coupling of Primary Heteroarylamines and (Hetero)aryl Chlorides. Angewandte Chemie, 2019, 131, 6457-6461.	1.6	21
82	A synthetic and X-ray crystallographic study of the indenyl-phosphine complexes 1,3-(Ph2Pî—»X)2(C9H6), (X=O, S) and (Î-5-C9H5(Ph2Pî—»S)2)[Mn(CO)3]: versatile ligands for the preparation of heteropolymetallic complexes. Journal of Organometallic Chemistry, 1998, 564, 101-108.	0.8	20
83	Remarkably Facile and Reversible Ruâ^'C(sp3) Bond Cleavage to Give a Reactive 16-Electron Cp*Ru(κ2-P,Carbene) Zwitterion. Journal of the American Chemical Society, 2007, 129, 6390-6391.	6.6	20
84	New Racemic Planar-Chiral Metalloligands Derived from Donor-Substituted Indenes:  A Synthetic, Structural, and Catalytic Investigation. Organometallics, 2007, 26, 6418-6427.	1.1	20
85	Utilizing Morâ€DalPhos/Palladiumâ€Catalyzed Monoarylation in the Multicomponent Oneâ€Pot Synthesis of Indoles. Advanced Synthesis and Catalysis, 2015, 357, 100-106.	2.1	20
86	PhPAdâ€DalPhos: Ligandâ€Enabled, Nickelâ€Catalyzed Crossâ€Coupling of (Hetero)aryl Electrophiles with Bulky Primary Alkylamines. Angewandte Chemie, 2019, 131, 2507-2511.	1.6	20
87	Design of New â€~DalPhos' P,N-Ligands: Applications in Transition-Metal Catalysis. Synlett, 2011, 2011, 2443-2458.	1.0	19
88	Examining the Impact of Heteroaryl Variants of PAd-DalPhos on Nickel-Catalyzed C(<i>>sp</i> < <ur>²)-N Cross-Couplings. Organometallics, 2019, 38, 167-175.</ur>	1.1	18
89	Mapping Dualâ€Baseâ€Enabled Nickelâ€Catalyzed Aryl Amidations: Application in the Synthesis of 4â€Quinolones. Angewandte Chemie - International Edition, 2022, 61, .	7.2	18
90	The synthesis and structural characterization of linear and macrocyclic bis(dinitrosyliron) complexes supported by bis(phosphine) bridging ligands. Canadian Journal of Chemistry, 2003, 81, 468-475.	0.6	17

#	Article	IF	Citations
91	Exploring the Influence of Phosphine Ligation on the Gold-Catalyzed Hydrohydrazination of Terminal Alkynes at Room Temperature. Organometallics, 2017, 36, 2470-2475.	1.1	17
92	CgPhen-DalPhos Enables the Nickel-Catalyzed $\langle i \rangle O \langle i \rangle$ -Arylation of Tertiary Alcohols with (Hetero)Aryl Electrophiles. ACS Catalysis, 2021, 11, 10878-10884.	5.5	17
93	Nickel-Catalyzed N-Arylation of Amides with (Hetero)aryl Electrophiles by Using a DBU/NaTFA Dual-Base System. Synlett, 2021, 32, 1665-1669.	1.0	17
94	Indenyl Hemilability: Unveiling a Masked (î·5-C5Me5)Ru(îº2-P,Carbene) Zwitterion Via Facile and Reversible Ruâ-°C(sp3) Bond Cleavage. Organometallics, 2008, 27, 6286-6299.	1.1	16
95	Ni and Cu-catalyzed one pot synthesis of unsymmetrical 1,3-di(hetero)aryl-1H-indazoles from hydrazine, o-chloro (hetero)benzophenones, and (hetero)aryl bromides. Organic and Biomolecular Chemistry, 2017, 15, 5062-5069.	1.5	16
96	Dehydrogenative Bâ^'H/C(sp ³)â^'H Benzylic Borylation within the Coordination Sphere of Platinum(II). Angewandte Chemie - International Edition, 2017, 56, 6312-6316.	7.2	16
97	A Manganese Preâ€Catalyst: Mild Reduction of Amides, Ketones, Aldehydes, and Esters. Angewandte Chemie, 2017, 129, 16117-16120.	1.6	16
98	Chromium N-phosphinoamidine ethylene tri-/tetramerization catalysts: Designing a step change in 1-octene selectivity. Journal of Catalysis, 2021, 394, 444-450.	3.1	16
99	Iron dinitrosyl complexes of TCNE: a synthetic, X-ray crystallographic, high field NMR and electrochemical study. Journal of Organometallic Chemistry, 1998, 558, 1-9.	0.8	15
100	Thieme Chemistry Journals Awardees – Where Are They Now? Efficient Cross-Coupling of Secondary Amines/Azoles and Activated (Hetero)Aryl Chlorides Using an Air-Stable DPEPhos/Nickel Pre-Catalyst. Synlett, 2017, 28, 1586-1591.	1.0	15
101	Nickelâ€Catalyzed Crossâ€Coupling of Sulfonamides With (Hetero)aryl Chlorides. Angewandte Chemie, 2020, 132, 9037-9041.	1.6	15
102	Dielsâ^Alder Dimerization of Cyclopenta[l]phenanthrene (Dibenz[e,g]indene) with Isodibenzindene:Â A Computational, NMR Spectroscopic, and X-ray Crystallographic Study. Journal of Organic Chemistry, 1998, 63, 3735-3740.	1.7	14
103	A Rare Example of Efficient Alkene Hydrogenation Mediated by a Neutral Iridium(I) Complex under Mild Conditions. Organometallics, 2006, 25, 29-31.	1.1	14
104	Stoichiometric Reactivity Relevant to the Mor-DalPhos/Pd-Catalyzed Cross-Coupling of Ammonia and 1-Bromo-2-(phenylethynyl)benzene. Organometallics, 2012, 31, 1049-1054.	1.1	14
105	Synthesis and Reactivity of New îº2-[P,N]Pt(II) Complexes of Diisopropylphosphino-Substituted 2-Dimethylaminoindene. Organometallics, 2005, 24, 1959-1965.	1.1	13
106	Synthesis and Crystallographic Characterization of New Manganese(I) Complexes of Donor-Functionalized Indenes. Organometallics, 2005, 24, 1737-1746.	1.1	13
107	Exploring the utility of neutral Rh(I) and Ir(I) \hat{I}^2 2-(P,O)MCOD catalyst complexes for the addition of triethylsilane to styrene. Inorganica Chimica Acta, 2006, 359, 2780-2785.	1.2	13
108	Reactivity of a coordinatively unsaturated Cp*Ru(\hat{l}^2 ² -P,O) complex. Chemical Communications, 2008, , 250-252.	2.2	13

#	Article	IF	Citations
109	Synthesis of pyrazolo[1,5-a]quinoxalin-4(5H)-ones via one-pot amidation/N-arylation reactions under transition metal-free conditions. Organic and Biomolecular Chemistry, 2016, 14, 8721-8727.	1.5	13
110	A comparative analysis of hydrosilative amide reduction catalyzed by first-row transition metal (Mn,) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
111	Reactions of C6F5Li with Tetracyclone and 3-Ferrocenyl-2,4,5-triphenylcyclopentadienone:  An 19F NMR and X-ray Crystallographic Study of Hindered Pentafluorophenyl Rotations. Journal of Organic Chemistry, 2000, 65, 3652-3658.	1.7	12
112	Structurally diverse Rh(i) and Mn(i) complexes derived from the new ambidentate indene ligand, (1-{iPr2P(S)}-2-{NMe2})C9H6. Chemical Communications, 2004, , 2446.	2.2	12
113	Exploring the utility of a new chiral phosphoramidite P,N-ligand derived from (R)-BINOL and 7-azaindole in asymmetric catalysis. Canadian Journal of Chemistry, 2009, 87, 72-79.	0.6	12
114	Intramolecular hydroamination of unactivated alkenes with secondary alkylamines catalyzed by iridium phosphino–phenolate complexes. Canadian Journal of Chemistry, 2010, 88, 700-708.	0.6	12
115	Using Hydrosilylation To Assemble Organometallic Polymers Containing Combinations of Silicon-Based Functional Groups. Organometallics, 1997, 16, 5042-5047.	1.1	11
116	Synthesis, structural characterization, and reactivity of Cp*Ru(N-phosphinoamidinate) complexes. Canadian Journal of Chemistry, 2014, 92, 194-200.	0.6	11
117	Diversification of edaravone via palladium-catalyzed hydrazine cross-coupling: Applications against protein misfolding and oligomerization of beta-amyloid. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 100-104.	1.0	11
118	Sequential one-pot three-step synthesis of polysubstituted 4-(5-(trifluoromethyl)-1H-pyrazol-4-yl)-1H-1,2,3-triazole systems. RSC Advances, 2017, 7, 43957-43964.	1.7	11
119	(DPEPhos)Ni(mesityl)Br: An Air-Stable Pre-Catalyst for Challenging Suzuki–Miyaura Cross-Couplings Leading to Unsymmetrical Biheteroaryls. Synlett, 2018, 29, 799-804.	1.0	11
120	Preparation of Hexacarbonyldicobalt-Complexed 1,3-Dioxa-2-silacycloheptynes. Organometallics, 1998, 17, 5342-5346.	1.1	10
121	Can a Formally Zwitterionic Rhodium(I) Complex Emulate the Charge Density of a Cationic Rhodium(I) Complex? A Combined Synchrotron X-ray and Theoretical Charge-Density Study. Inorganic Chemistry, 2012, 51, 3754-3769.	1.9	10
122	Synthesis and Reactivity of a Neutral, Three oordinate Platinum(II) Complex Featuring Terminal Amido Ligation. Angewandte Chemie - International Edition, 2015, 54, 14498-14502.	7.2	10
123	Probing the Influence of PAd-DalPhos Ancillary Ligand Structure on Nickel-Catalyzed Ammonia Cross-Coupling. Organometallics, 2018, 37, 4015-4023.	1.1	10
124	Identification of a Nitrenoid Reductive Elimination Pathway in Nickel-Catalyzed C–N Cross-Coupling. ACS Catalysis, 2022, 12, 1475-1480.	5. 5	10
125	Crystallographic characterization of a stable 7-phosphanorbornadiene-7-oxide: 2,3-benzo-1,4,5,6,7-pentaphenyl-7-phosphabicyclo[2.2.1] hepta-2,5-diene-7-oxide. Heteroatom Chemistry, 2000, 11, 182-186.	0.4	9
126	(κ2-P,S)Pt(benzyl) complexes derived from 1/3-PiPr2-2-StBu-indene: facile synthesis of carbanion- and borate-containing zwitterions. Chemical Communications, 2008, , 5645.	2.2	9

#	Article	IF	Citations
127	CHAPTER 5. Ancillary Ligand Design in the Development of Palladium Catalysts for Challenging Selective Monoarylation Reactions. RSC Catalysis Series, 0, , 228-253.	0.1	9
128	Can metal clusters assist silicon migrations? An NMR spectroscopic and X-ray crystallographic study. Inorganic Chemistry Communication, 1998, 1, 105-108.	1.8	8
129	The molecular dynamics and cycloaddition chemistry of tris(1-indenyl)allylsilane Part 1Generation of the first crystallographically characterized tris(benzonorbornyl)silane. New Journal of Chemistry, 1999, 23, 317-321.	1.4	8
130	The molecular dynamics and reactivity of tris(inden-1-yl)silane: an NMR spectroscopic and X-ray crystallographic study â€. Perkin Transactions II RSC, 2000, , 611-618.	1.1	8
131	Organic Base Enabled Nickelâ€Catalyzed Monoâ€Î±â€Arylation of Feedstock Solvents. Chemistry - A European Journal, 2022, 28, .	1.7	8
132	Nickel-Catalyzed C–N Cross-Coupling of 4-Chloro-1,8-naphthalimides and Bulky, Primary Alkylamines at Room Temperature. Journal of Organic Chemistry, 2022, 87, 6492-6498.	1.7	8
133	Rhodium phosphino-enolate complexes as chemo- and regioselective catalysts for the hydroformylation of styrenes. Journal of Organometallic Chemistry, 2010, 695, 1869-1872.	0.8	7
134	Probing the effect of donor-fragment substitution in Mor-DalPhos on palladium-catalyzed C–N and C–C cross-coupling reactivity. Canadian Journal of Chemistry, 2018, 96, 578-586.	0.6	7
135	Bulky 1,1′-Ferrocenyl Ligands Featuring Diazaphospholene or Dioxaphosphepine Donor Fragments: Catalytic Screening in Nickel-Catalyzed C-N Cross-Coupling. European Journal of Inorganic Chemistry, 2019, 2019, 4112-4116.	1.0	7
136	Generation of [(IPr)Pd(PR ₂ Cl)] complexes via P–Cl reductive elimination. Dalton Transactions, 2012, 41, 7883-7885.	1.6	6
137	Probing the utility of palladium complexes supported by morpholine-functionalized N-heterocyclic carbene ligands in Buchwald–Hartwig amination. Canadian Journal of Chemistry, 2013, 91, 755-762.	0.6	6
138	Organic and organometallic derivatives of pentaphenylbenzene, C ₆ Ph ₅ X: correlation of peripheral phenyl ring orientations with the steric bulk of "X― Canadian Journal of Chemistry, 2013, 91, 1098-1111.	0.6	6
139	Developing backbone-modified Mor-DalPhos ligand variants for use in palladium-catalyzed C–N and C–C cross-coupling. Canadian Journal of Chemistry, 2018, 96, 712-721.	0.6	6
140	Synthesis, characterization, and catalytic application of a new chiral P,N-indene ligand derived from (R)-BINOL. Journal of Organometallic Chemistry, 2009, 694, 1943-1947.	0.8	5
141	Dehydrogenative Bâ^'H/C(sp ³)â^'H Benzylic Borylation within the Coordination Sphere of Platinum(II). Angewandte Chemie, 2017, 129, 6409-6413.	1.6	5
142	Nickelâ€Catalyzed Nâ€Arylation of Fluoroalkylamines. Angewandte Chemie, 2021, 133, 4126-4130.	1.6	5
143	Mapping Dualâ€Baseâ€Enabled Nickelâ€Catalyzed Aryl Amidations: Application in the Synthesis of 4â€Quinolones. Angewandte Chemie, 2022, 134, .	1.6	4
144	Dielsâ^'Alder Adducts of 5-Alkynylcyclopentadienols with Tetracyanoethylene and Dimethyl Acetylenedicarboxylate:Â An X-ray Crystallographic Study of Unexpected Rearrangement Products. Journal of Organic Chemistry, 2000, 65, 4861-4863.	1.7	3

#	Article	IF	CITATIONS
145	Synthetic investigations of low-coordinate (<i>N</i> -phosphino-amidinate) nickel chemistry: agostic alkyl complexes and benzene insertion into Ni–H. Dalton Transactions, 2020, 49, 4811-4816.	1.6	2
146	Structural and Reactivity Comparisons of JosiPhos CyPF-Cy and a Simplified Variant ("CyPBn-Cyâ€) in Nickel-Catalyzed C(sp ²)-N Cross-Couplings. Organometallics, 2021, 40, 2915-2922.	1.1	2
147	Sulfur-containing DalPhos ligand variants: synthesis and application in Buchwaldâ^'Hartwig amination. Canadian Journal of Chemistry, 2015, 93, 326-333.	0.6	1
148	A new fluorous soluble Lewis acidic borane system. Canadian Journal of Chemistry, 2004, 82, 533-538.	0.6	0