Luis Pérez-Villarejo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5704147/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sintering behaviour of a clay containing pyrophyllite, sericite and kaolinite as ceramic raw materials: Looking for the optimum firing conditions. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2023, 62, 26-39.	1.9	3
2	Alkaline activation of high-crystalline low-Al2O3 Construction and Demolition Wastes to obtain geopolymers. Journal of Cleaner Production, 2022, 330, 129770.	9.3	21
3	Study of a Waste Kaolin as Raw Material for Mullite Ceramics and Mullite Refractories by Reaction Sintering. Materials, 2022, 15, 583.	2.9	9
4	Vitrification rate and estimation of the optimum firing conditions of ceramic materials from raw clays: A review. Ceramics International, 2022, 48, 15889-15898.	4.8	8
5	PROBLEM-BASED LEARNING EXPERIENCE IN ENGINEERING. INTED Proceedings, 2022, , .	0.0	Ο
6	Physical, mechanical and thermal properties of metakaolin-fly ash geopolymers. Sustainable Chemistry and Pharmacy, 2022, 26, 100620.	3.3	20
7	Reuse of Rice Husk Ash as an Alkaline Activator in the Manufacture of Alkaline Cements. , 2022, 8, .		0
8	Effect of Durability on the Mechanical Properties of Geopolymers Made from By-Products from the Construction Industry. , 2022, 8, .		1
9	Characterization, thermal and ceramic properties of clays from Alhabia (AlmerÃa, Spain). Ceramics International, 2022, , .	4.8	7
10	Comparative study of alkali activated cements based on metallurgical slags, in terms of technological properties developed. Sustainable Chemistry and Pharmacy, 2022, 29, 100746.	3.3	3
11	Mining Wastes of an Albite Deposit as Raw Materials for Vitrified Mullite Ceramics. Minerals (Basel,) Tj ETQq1 1	0.784314	rg&T /Overloc
12	Synthesis of clay geopolymers using olive pomace fly ash as an alternative activator. Influence of the additional commercial alkaline activator used. Journal of Materials Research and Technology, 2021, 12, 1762-1776.	5.8	17
13	Effects of an Illite Clay Substitution on Geopolymer Synthesis as an Alternative to Metakaolin. Journal of Materials in Civil Engineering, 2021, 33, .	2.9	10
14	Effect of Activating Solution Modulus on the Synthesis of Sustainable Geopolymer Binders Using Spent Oil Bleaching Earths as Precursor. Sustainability, 2021, 13, 7501.	3.2	5
15	Geopolymers made from metakaolin sources, partially replaced by Spanish clays and biomass bottom ash. Journal of Building Engineering, 2021, 40, 102761.	3.4	13
16	Effect of steel slag and curing temperature on the improvement in technological properties of biomass bottom ash based alkali-activated materials. Construction and Building Materials, 2021, 302, 124205.	7.2	32
17	Valorization of Olive Biomass Fly Ash for Production Eco Friendly Ceramic Bricks. , 2020, , 285-294.		5
18	Upgrading almond-tree pruning as a biofuel via wet torrefaction. Renewable Energy, 2020, 145,	8.9	31

2091-2100.

Luis Pérez-Villarejo

#	Article	IF	CITATIONS
19	New wasteâ€based clinkers for the preparation of lowâ€energy cements. A step forward toward circular economy. International Journal of Applied Ceramic Technology, 2020, 17, 12-21.	2.1	11
20	Comparative study of the use of different biomass from olive grove in the manufacture of sustainable ceramic lightweight bricks. Construction and Building Materials, 2020, 231, 117103.	7.2	24
21	Dust filter of secondary aluminium industry as raw material of geopolymer foams. Journal of Building Engineering, 2020, 32, 101656.	3.4	13
22	Characterization, thermal and ceramic properties of phyllite clays from southeast Spain. Journal of Thermal Analysis and Calorimetry, 2020, 142, 1659-1670.	3.6	7
23	Effect of Olive-Pine Bottom Ash on Properties of Geopolymers Based on Metakaolin. Materials, 2020, 13, 901.	2.9	14
24	Wood Bottom Ash and GeoSilex: A By-Product of the Acetylene Industry as Alternative Raw Materials in Calcium Silicate Units. Materials, 2020, 13, 489.	2.9	5
25	Drying kinetics and effective water diffusivities in olive stone and olive-tree pruning. Renewable Energy, 2019, 132, 911-920.	8.9	45
26	The effect of vitreous phase on mullite and mullite-based ceramic composites from kaolin wastes as by-products of mining, sericite clays and kaolinite. Materials Letters, 2018, 223, 154-158.	2.6	35
27	Thermal behaviour of sericite clays as precursors of mullite materials. Journal of Thermal Analysis and Calorimetry, 2018, 132, 967-977.	3.6	24
28	Synthesis of vaterite CaCO3 as submicron and nanosized particles using inorganic precursors and sucrose in aqueous medium. Ceramics International, 2018, 44, 5291-5296.	4.8	39
29	Inorganic polymers synthesized using biomass ashes-red mud as precursors based on clay-kaolinite system. Materials Letters, 2018, 225, 161-166.	2.6	12
30	Investigation of use of coal fly ash in eco-friendly construction materials: fired clay bricks and silica-calcareous non fired bricks. Ceramics International, 2018, 44, 4400-4412.	4.8	85
31	Manufacture of Sustainable Clay Bricks Using Waste from Secondary Aluminum Recycling as Raw Material. Materials, 2018, 11, 2439.	2.9	24
32	Stabilization of flotation wastes resulting from the treatment of Pb/Zn ore based on geopolymers. Materials Letters, 2018, 227, 221-224.	2.6	6
33	Biomass fly ash and aluminium industry slags-based geopolymers. Materials Letters, 2018, 229, 6-12.	2.6	18
34	Manufacture of sustainable clay ceramic composite with composition SiO2-Al2O3-CaO-K2O materials valuing biomass ash from olive pomace. Materials Letters, 2018, 229, 21-25.	2.6	15
35	Effect of acid attack on microstructure and composition of metakaolin-based geopolymers: The role of alkaline activator. Journal of Non-Crystalline Solids, 2017, 463, 128-137.	3.1	52
36	Comparative Study of the Use of Different Biomass Bottom Ash in the Manufacture of Ceramic Bricks. Journal of Materials in Civil Engineering, 2017, 29, .	2.9	6

#	Article	IF	CITATIONS
37	Ceramics from clays and by-product from biodiesel production: Processing, properties and microstructural characterization. Applied Clay Science, 2016, 121-122, 119-126.	5.2	20
38	Obtención de nanopartÃculas de carbonato de calcio a partir de precursores inorgÃ;nicos y sacarosa como aditivo con potencial utilización como biomaterial. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2016, 55, 179-184.	1.9	4
39	Valorization and inertization of galvanic sludge waste in clay bricks. Applied Clay Science, 2015, 105-106, 89-99.	5.2	81
40	Production of Ceramic Material Using Wastes from Brewing Industry. Key Engineering Materials, 2015, 663, 94-104.	0.4	5
41	Addition of bottom ash from biomass in calcium silicate masonry units for use as construction material with thermal insulating properties. Construction and Building Materials, 2014, 52, 155-165.	7.2	42
42	Replacement of the mixing fresh water by wastewater olive oil extraction in the extrusion of ceramic bricks. Construction and Building Materials, 2014, 68, 659-666.	7.2	25
43	An evaluation of bottom ash from plant biomass as a replacement for cement in building blocks. Fuel, 2014, 118, 272-280.	6.4	86
44	Magnesium hydroxide, seawater and olive mill wastewater to reduce swelling potential and plasticity of bentonite soil. Construction and Building Materials, 2013, 45, 289-297.	7.2	23
45	Valorization of biodiesel production residues in making porous clay brick. Fuel Processing Technology, 2012, 103, 166-173.	7.2	78
46	Recycling of sawdust, spent earth from oil filtration, compost and marble residues for brick manufacturing. Construction and Building Materials, 2012, 34, 275-284.	7.2	150
47	Manufacturing new ceramic materials from clay and red mud derived from the aluminium industry. Construction and Building Materials, 2012, 35, 656-665.	7.2	106
48	Recycling of ash from biomass incinerator in clay matrix to produce ceramic bricks. Journal of Environmental Management, 2012, 95, S349-S354.	7.8	75
49	Sludge valorization from wastewater treatment plant to its application on the ceramic industry. Journal of Environmental Management, 2012, 95, S343-S348.	7.8	93
50	The use of different forms of waste in the manufacture of ceramic bricks. Applied Clay Science, 2011, 52, 270-276.	5.2	194
51	Incorporation of coffee grounds into clay brick production. Advances in Applied Ceramics, 2011, 110, 225-232.	1.1	53
52	Lodos procedentes de la industria de tratamiento de superficies metálicas como aditivos a matrices cerámicas. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2011, 50, 117-124.	1.9	3
53	Determination of oil and water content in olive pomace using near infrared and Raman spectrometry. A comparative study. Analytical and Bioanalytical Chemistry, 2004, 379, 35-41.	3.7	68
54	Effect of Portland Cement Addition in Ferrosilicon Slag Alkali Activated Materials. , 0, , .		0

 $\label{eq:effect} Effect \ of \ Portland \ Cement \ Addition \ in \ Ferrosilicon \ Slag \ Alkali \ Activated \ Materials. \ , 0, \ , .$ 54

#	Article	IF	CITATIONS
55	Alkali Activated Cements Based on Slags from Different Industries. , 0, , .		2