Shoou Jinn Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5704118/publications.pdf

Version: 2024-02-01

327 papers 4,681 citations

36 h-index 52 g-index

330 all docs

330 docs citations

times ranked

330

4831 citing authors

#	Article	IF	CITATIONS
1	The study of humidity sensor based on Li-doped ZnO nanorods by hydrothermal method. Microsystem Technologies, 2022, 28, 423-427.	1.2	4
2	Aluminum-doped zinc oxide nanorods and methyl alcohol gas sensor application. Microsystem Technologies, 2022, 28, 377-382.	1.2	6
3	Advanced Nanomaterials for Applications in Photonic and Sensor Devices. Journal of Nanomaterials, 2022, 2022, 1-2.	1.5	4
4	High Stability Flexible Deep-UV Detector Based on All-Oxide Heteroepitaxial Junction. ACS Applied Electronic Materials, 2022, 4, 3099-3106.	2.0	9
5	The Characteristics of Aluminum-Gallium-Zinc-Oxide Ultraviolet Phototransistors by Co-Sputtering Method. Electronics (Switzerland), 2021, 10, 631.	1.8	2
6	Stability-Enhanced Resistive Random-Access Memory via Stacked In _{<i>x</i>} Ga _{1â€"<i>x</i>} O by the RF Sputtering Method. ACS Omega, 2021, 6, 10691-10697.	1.6	4
7	High Response of Ethanol Gas Sensor Based on NiO-Doped Apple Pectin by the Solution Process. Coatings, 2021, 11, 1073.	1.2	1
8	Performance Improvement of Co-Sputtering AlGaZnO Solar-Blind Photodetectors. IEEE Sensors Journal, 2021, 21, 18682-18687.	2.4	2
9	Indium Aluminum Zinc Oxide Phototransistor With HfO2 Dielectric Layer Through Atomic Layer Deposition. IEEE Sensors Journal, 2020, 20, 1838-1842.	2.4	3
10	Photoresponses of Zinc Tin Oxide Thin-Film Transistor. Journal of Nanoscience and Nanotechnology, 2020, 20, 1704-1708.	0.9	7
11	Voltage-Tunable UVC–UVB Dual-Band Metal–Semiconductor–Metal Photodetector Based on Ga2O3/MgZnO Heterostructure by RF Sputtering. Coatings, 2020, 10, 994.	1.2	6
12	Fabrication of Silicon Dioxide by Photo-Chemical Vapor Deposition to Decrease Detector Current of ZnO Ultraviolet Photodetectors. ACS Omega, 2020, 5, 27566-27571.	1.6	3
13	Investigation of Conductive Mechanism of Amorphous IGO Resistive Random-Access Memory with Different Top Electrode Metal. Coatings, 2020, 10, 504.	1.2	4
14	An Amorphous (Al0.12Ga0.88)2O3 Deep Ultraviolet Photodetector. IEEE Photonics Journal, 2020, 12, 1-8.	1.0	2
15	Selected Papers from IEEE ICASI 2018. Applied Sciences (Switzerland), 2020, 10, 964.	1.3	O
16	Polycrystalline In–Ga–O Thin-Film Transistors Coupled With a Nitrogen Doping Technique for High-Performance UV Detectors. IEEE Transactions on Electron Devices, 2020, 67, 140-145.	1.6	3
17	Investigation of nitrogen doping effects on light-induced oxygen vacancy ionization and oxygen desorption in c-IGO TFTs. Materials Research Express, 2019, 6, 106445.	0.8	3
18	Fast Detection and Flexible Microfluidic pH Sensors Based on Al-Doped ZnO Nanosheets with a Novel Morphology. ACS Omega, 2019, 4, 19847-19855.	1.6	27

#	Article	IF	CITATIONS
19	Design of Dual-Band Bandpass Filter With Simultaneous Narrow- and Wide-Bandwidth and a Wide Stopband. IEEE Access, 2019, 7, 147694-147703.	2.6	14
20	Ultraviolet/Visible Photodetectors Based on p–n NiO/ZnO Nanowires Decorated with Pd Nanoparticles. ACS Applied Nano Materials, 2019, 2, 6343-6351.	2.4	36
21	Enhanced Detection of Ethanol in a Humid Ambient Using Al ₂ O ₃ -Doped Cactus-Like ZnO Nanoflowers With Gold Nanoparticles. IEEE Transactions on Device and Materials Reliability, 2019, 19, 409-415.	1.5	4
22	Integration of bandgap-engineered double-stacked channel layers with nitrogen doping for high-performance InGaO TFTs. Applied Physics Letters, 2019, 114, .	1.5	20
23	Indium Aluminum Zinc Oxide Thin Film Transistor With Al ₂ O ₃ Dielectric for UV Sensing. IEEE Photonics Technology Letters, 2019, 31, 1005-1008.	1.3	7
24	Indium Gallium Oxide Thin Film Transistor for Two-Stage UV Sensor Application. ECS Journal of Solid State Science and Technology, 2019, 8, Q3140-Q3143.	0.9	15
25	Stability Improvement of Nitrogen Doping on IGO TFTs under Positive Gate Bias Stress and Hysteresis Test. ECS Journal of Solid State Science and Technology, 2019, 8, Q3034-Q3040.	0.9	10
26	Bandgap Engineered Ultraviolet Photodetectors with Gallium-Zinc-Oxide via Co-Sputtering Method. ECS Journal of Solid State Science and Technology, 2018, 7, Q3083-Q3088.	0.9	6
27	Visible Illumination Enhanced Nonenzymatic Glucose Photobiosensor Based on TiO ₂ Nanorods Decorated With Au Nanoparticles. IEEE Transactions on Biomedical Engineering, 2018, 65, 2052-2057.	2.5	5
28	Through-silicon via submount for the CuO/Cu2O nanostructured field emission display. RSC Advances, 2018, 8, 706-709.	1.7	3
29	High Density Novel Porous ZnO Nanosheets Based on a Microheater Chip for Ozone Sensors. IEEE Sensors Journal, 2018, 18, 5559-5565.	2.4	26
30	Amorphous Indium Titanium Zinc Oxide Thin Film Transistor and Impact of Gate Dielectrics on Its Photo-Electrical Properties. ECS Journal of Solid State Science and Technology, 2018, 7, Q3049-Q3053.	0.9	3
31	Photo-Electrical Properties of MgZnO Thin-Film Transistors With High- \${k}\$ Dielectrics. IEEE Photonics Technology Letters, 2018, 30, 59-62.	1.3	17
32	Photoresponses of Gallium Zinc Tin Oxide Thin-Film Transistors Fabricated by Cosputtering Method. , 2018, 2, 1-4.		1
33	UV-Enhanced 2-D Nanostructured ZnO Field Emitter With Adsorbed Pt Nanoparticles. IEEE Electron Device Letters, 2018, 39, 1932-1935.	2.2	6
34	High Sensitivity of NO Gas Sensors Based on Novel Ag-Doped ZnO Nanoflowers Enhanced with a UV Light-Emitting Diode. ACS Omega, 2018, 3, 13798-13807.	1.6	92
35	Effects of Average Power-Handling Capability on DC-Sputtering Aluminum Nitride Thin Film on Ceramic Substrate. , 2018, , .		1
36	Effect of Oxygen Vacancy Ratio on a GaZTO Solar-Blind Photodetector. Coatings, 2018, 8, 293.	1.2	14

#	Article	IF	Citations
37	Electrical Properties of Indium Aluminum Zinc Oxide Thin Film Transistors. Journal of Electronic Materials, 2018, 47, 6923-6928.	1.0	17
38	Highly stable ITO/Zn2TiO4/Pt resistive random access memory and its application in two-bit-per-cell. RSC Advances, 2018, 8, 17622-17628.	1.7	12
39	Bandgap-Engineered Zinc-Tin-Oxide Thin Films for Ultraviolet Sensors. Journal of Nanoscience and Nanotechnology, 2018, 18, 4930-4934.	0.9	3
40	Optical and photo-electrical properties of zinc tin oxide thin-film phototransistor., 2018,,.		2
41	Effect of different partial pressure on Ga-doped ZnO UV photodetectors by RF sputtering. , 2018, , .		0
42	Introduction to a New Journal: Applied System Innovation. Applied System Innovation, 2018, 1, 1.	2.7	14
43	Design of Dual-Band Transparent Antenna by Using Nano-Structured Thin Film Coating Technology. , 2018, , .		2
44	Fabrication of Zinc Oxide-Based Thin-Film Transistors by Radio Frequency Sputtering for Ultraviolet Sensing Applications. Journal of Nanoscience and Nanotechnology, 2018, 18, 3518-3522.	0.9	5
45	A Bifacial SnO ₂ Thin-Film Ethanol Gas Sensor. IEEE Electron Device Letters, 2018, 39, 1223-1225.	2.2	14
46	Properties of Ga–Zn–O Ultraviolet Phototransistors Using Radio-Frequency Magnetron Co-Sputtering Method. Nanoscience and Nanotechnology Letters, 2018, 10, 396-402.	0.4	1
47	Tunable UV- and Visible-Light Photoresponse Based on p-ZnO Nanostructures/n-ZnO/Glass Peppered with Au Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2017, 9, 14935-14944.	4.0	57
48	Thin-Film Transistors With Amorphous Indium–Gallium-Oxide Bilayer Channel. IEEE Electron Device Letters, 2017, 38, 572-575.	2.2	18
49	Nonenzymatic Glucose Sensor Based on Au/ZnO Coreâ€"Shell Nanostructures Decorated with Au Nanoparticles and Enhanced with Blue and Green Light. Journal of Physical Chemistry B, 2017, 121, 2931-2941.	1.2	27
50	A WO ₃ Nanoparticles NO Gas Sensor Prepared by Hot-Wire CVD. IEEE Electron Device Letters, 2017, 38, 266-269.	2,2	36
51	Performance improvement of highly mismatched GaSb layers on GaAs by interfacial-treatment-assisted chemical vapor deposition. Journal of Materials Science: Materials in Electronics, 2017, 28, 845-855.	1.1	0
52	Growth and characterization of high quality N-type GaSb/GaAs heterostructure by IMF growth mode using MOCVD for low power application. Applied Physics Letters, 2017, 111, 162108.	1.5	1
53	System setup consideration for range gated imaging. , 2017, , .		0
54	High Responsivity MgZnO Ultraviolet Thin-Film Phototransistor Developed Using Radio Frequency Sputtering. Materials, 2017, 10, 126.	1.3	23

#	Article	IF	CITATIONS
55	Oxygen Partial Pressure Impact on Characteristics of Indium Titanium Zinc Oxide Thin Film Transistor Fabricated via RF Sputtering. Nanomaterials, 2017, 7, 156.	1.9	15
56	The Effect of the Thickness and Oxygen Ratio Control of Radio-Frequency Magnetron Sputtering on MgZnO Thin-Film Transistors. Journal of Nanoscience and Nanotechnology, 2017, 17, 2037-2040.	0.9	1
57	Detection Method of Alcohol in Calf Serum with Zinc Oxide Nanowire Ethanol Sensor. Journal of Nanoscience and Nanotechnology, 2017, 17, 2104-2108.	0.9	0
58	High efficiency transparent digital television antenna based on nano-structured thin film coating technology. , $2017, \ldots$		2
59	Ultimate Aims and Prospects of Inventions. Inventions, 2016, 1, 1-2.	1.3	9
60	Enhanced Photoluminescent Properties and Crystalline Morphology of LiBaPO4:Tm3+ Phosphor through Microwave Sintering Method. Materials, 2016, 9, 356.	1.3	7
61	Preparation of a Carbon Doped Tissue-Mimicking Material with High Dielectric Properties for Microwave Imaging Application. Materials, 2016, 9, 559.	1.3	7
62	Design of wideband bandpass filter using mode-exciting technology. Microwave and Optical Technology Letters, 2016, 58, 1507-1510.	0.9	2
63	Synthesis of In ₂ O ₃ Nanowires and Their Gas Sensing Properties. IEEE Sensors Journal, 2016, 16, 5850-5855.	2.4	8
64	Fabrication and characterization of GaN ultraviolet photodetector prepared by growing on geometrical patterned sapphire substrate. , 2016, , .		0
65	A three-dimensional ZnO nanowires photodetector. , 2016, , .		0
66	Electron field emitters made of 3-D CuO nanowires on flexible silicon substrate fabricated by heating Cu rods with through silicon via process. RSC Advances, 2016, 6, 47292-47297.	1.7	4
67	Design of a Compact Ultra-Wideband Bandpass Filter With an Extremely Broad Stopband Region. IEEE Microwave and Wireless Components Letters, 2016, 26, 392-394.	2.0	44
68	Effect of different alkali carbonate on the microstructure and photoluminescent properties of YInGe2O7:Eu3+ phosphors. Journal of Materials Science: Materials in Electronics, 2016, 27, 2963-2967.	1.1	5
69	p-MOSFET and n-MOSFET prepared by ICP-assisted hot wire implantation doping technique. IEEE Electron Device Letters, 2016, , 1-1.	2.2	1
70	Transparent ZnO-nanowire-based device for UV light detection and ethanol gas sensing on c-Si solar cell. RSC Advances, 2016, 6, 11146-11150.	1.7	35
71	High Responsivity Mg _x Zn _{1â^'x} O Film UV Photodetector Grown by RF Sputtering. IEEE Photonics Technology Letters, 2015, 27, 978-981.	1.3	18
72	Assessment of dielectric properties for the microwave phantom production. , 2015, , .		0

#	Article	IF	Citations
73	InGaN-based MQE LEDs with tunnel-junction-cascaded structure. , 2015, , .		O
74	GaN-based LEDs with flower shape ZnO nanorods by SILAR-based and hydrothermal methods. , 2015, , .		0
75	A compact lowâ€pass filter with ultrabroad stopband characteristics. Microwave and Optical Technology Letters, 2015, 57, 2800-2803.	0.9	5
76	Applications of Advanced Nanomaterials to Microelectronic and Photonic Devices. Journal of Nanomaterials, 2015, 2015, 1-1.	1.5	2
77	Transmission Properties in Lossy Single-Negative Materials. IEEE Photonics Journal, 2015, 7, 1-8.	1.0	0
78	Amorphous Indium–Gallium–Oxide UV Photodetectors. IEEE Photonics Technology Letters, 2015, 27, 2083-2086.	1.3	41
79	An excellent encapsulation of silicone on an optimized-ZnO-nanowires anti-reflection layer for crystalline-Si photovoltaic devices. , 2015 , , .		0
80	c-Si solar cells and Si n-MOSFETs prepared by ICP assisted hot wire implantation doping. RSC Advances, 2015, 5, 96547-96550.	1.7	1
81	GaN-Based High-Voltage Light-Emitting Diodes With SU-8 Passivation. Journal of Display Technology, 2015, 11, 374-377.	1.3	7
82	Bandgap-Engineered in Indium–Gallium–Oxide Ultraviolet Phototransistors. IEEE Photonics Technology Letters, 2015, 27, 915-918.	1.3	41
83	Terahertz Negative Refraction in a High-Temperature Superconducting Material. IEEE Transactions on Terahertz Science and Technology, 2015, 5, 230-235.	2.0	2
84	GaN MSM UV Photodetector With Sputtered AlN Nucleation Layer. IEEE Sensors Journal, 2015, 15, 4743-4748.	2.4	37
85	Investigation of optical and electrical properties of GaN-based blue light-emitting diodes with various quantum well thicknesses. Journal of Photonics for Energy, 2015, 5, 057612.	0.8	6
86	Electron field emission enhancement of hybrid Cu/CuO nanowires fabricated by rapid thermal reduction of CuO nanowires. RSC Advances, 2015, 5, 54220-54224.	1.7	11
87	Conversion Efficiency Improvement of InGaN/GaN Multiple-Quantum-Well Solar Cells With <italic>Ex Situ</italic> AlN Nucleation Layer. IEEE Transactions on Electron Devices, 2015, 62, 1473-1477.	1.6	7
88	A Simple and Effective Method for Designing Frequency Adjustable Balun Diplexer With High Common-Mode Suppression. IEEE Microwave and Wireless Components Letters, 2015, 25, 433-435.	2.0	14
89	Effects of last barrier thickness on the hot–cold factor of GaN-based light-emitting diodes. Journal of Photonics for Energy, 2015, 5, 057602.	0.8	0
90	Effects of microcell layout on the performance of GaN-based high-voltage light-emitting diodes. Journal of Photonics for Energy, 2015, 5, 057605.	0.8	6

#	Article	lF	Citations
91	Synthesis of CulnS2 quantum dots using polyetheramine as solvent. Nanoscale Research Letters, 2015, 10, 122.	3.1	16
92	GaN-Based Power Flip-Chip LEDs With SILAR and Hydrothermal ZnO Nanorods. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 431-435.	1.9	3
93	Two-bit-per-cell resistive switching memory device with a Ti/MgZnO/Pt structure. RSC Advances, 2015, 5, 88166-88170.	1.7	11
94	Effects of humidity and ultraviolet characteristics on \hat{l}^2 -Ga ₂ O ₃ nanowire sensor. RSC Advances, 2015, 5, 84776-84781.	1.7	18
95	AlGaInP-based LEDs with ZnO nanostructures by successive ionic layer adsorption and reaction and hydrothermal methods. , 2015, , .		0
96	Effect of Solvent Chelating on Crystal Growth Mechanism of CZTSe Nanoink in Polyetheramine. IEEE Nanotechnology Magazine, 2015, 14, 896-903.	1.1	1
97	Enhanced field emission properties based on In–In2O3 composite nanopagodas. RSC Advances, 2015, 5, 5192-5196.	1.7	3
98	GaN-Based LEDs With Hot/Cold Factor Improved by the Electron Blocking Layer. Journal of Display Technology, 2014, 10, 1078-1082.	1.3	5
99	Frequency Response of a Ferroelectric Material in Double-Negative Region. IEEE Photonics Journal, 2014, 6, 1-11.	1.0	0
100	Integration of a-IGZO Thin-Film Transistor and Crystalline-Si Interdigitated Back Contact Photovoltaic Cell With 3D Stacking Structure as Self-Powered Solar Switch. IEEE Electron Device Letters, 2014, 35, 1040-1042.	2,2	3
101	Optimization of the dye-sensitized solar cell performance by mechanical compression. Nanoscale Research Letters, 2014, 9, 523.	3.1	24
102	A triband bandpass filter with low loss and high band selectivity using the splitâ€end asymmetric stepped impedance resonators. Microwave and Optical Technology Letters, 2014, 56, 1427-1430.	0.9	6
103	Characteristics of TiO <inf>2</inf> metal-semiconductor-metal photodetectors with O <inf>2</inf> plasma treatment. , 2014, , .		1
104	Investigation of zinc-tin-oxide thin-film transistors with varying SnO2 contents. Electronic Materials Letters, 2014, 10, 89-94.	1.0	8
105	UV Enhanced Field Emission Performance of Mg-Doped ZnO Nanorods. IEEE Transactions on Electron Devices, 2014, 61, 1541-1545.	1.6	26
106	A high selectivity and wide stopband UWB bandpass filter using asymmetric SIRs with splitâ€end. Microwave and Optical Technology Letters, 2014, 56, 1353-1356.	0.9	1
107	ZnO nanowires modified with Au nanoparticles for nonenzymatic amperometric sensing of glucose. Applied Physics Letters, 2014, 104, .	1.5	28
108	GaN-Based Light-Emitting-Diode With a p-InGaN Layer. Journal of Display Technology, 2014, 10, 204-207.	1.3	0

#	Article	IF	Citations
109	Visible-Blind Photodetectors With Mg-Doped ZnO Nanorods. IEEE Photonics Technology Letters, 2014, 26, 645-648.	1.3	34
110	Enhanced Field Emission of ${m TiO}_{2}$ Nanowires With UV Illumination. IEEE Electron Device Letters, 2014, 35, 123-125.	2.2	9
111	GaN-Based LEDs With Rough Surface and Selective KOH Etching. Journal of Display Technology, 2014, 10, 27-32.	1.3	8
112	Two-dimensional ZnO nanowalls for gas sensor and photoelectrochemical applications. Electronic Materials Letters, 2014, 10, 693-697.	1.0	14
113	Effect of V/III ratios on surface morphology in a GaSb thin film grown on GaAs substrate by MOCVD. , 2014, , .		O
114	GaN-Based Light-Emitting Diodes With Staircase Electron Injector Structure. Journal of Display Technology, 2014, 10, 162-166.	1.3	3
115	Amorphous InGaZnO Ultraviolet Phototransistors With a Thin Ga ₂ O ₃ Layer. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 125-129.	1.9	14
116	Failure Mechanism for GaN-Based High-Voltage Light-Emitting Diodes. IEEE Photonics Technology Letters, 2014, 26, 1073-1076.	1.3	9
117	ZnO Branched Nanowires and the p-CuO/n-ZnO Heterojunction Nanostructured Photodetector. IEEE Nanotechnology Magazine, 2013, 12, 263-269.	1.1	62
118	Diluted Magnetic Nanosemiconductor: Fe-Doped ZnO Vertically Aligned Nanorod Arrays Grown by Hydrothermal Synthesis. IEEE Nanotechnology Magazine, 2013, 12, 649-655.	1.1	7
119	Carbon Nanotubes With Adsorbed Au for Sensing Gas. IEEE Sensors Journal, 2013, 13, 2423-2427.	2.4	36
120	Noise Properties of ZnO Nanowalls Deposited Using Rapid Thermal Evaporation Technology. IEEE Photonics Technology Letters, 2013, 25, 213-216.	1.3	7
121	Investigating the Effect of Piezoelectric Polarization on GaN-Based LEDs With Different Quantum Barrier Thickness. Journal of Display Technology, 2013, 9, 206-211.	1.3	14
122	$m Ga_{2}\m O_{3}\$ /GaN-Based Metal-Semiconductor-Metal Photodetectors Covered With Au Nanoparticles. IEEE Photonics Technology Letters, 2013, 25, 1809-1811.	1.3	18
123	m = 12 Manowire Photodetector Prepared on $m = 12$ Marowire Photodetector Prepared on $m = 12$ Marowire Photodetector Prepared on $m = 12$ Marowine Pho	2.4	40
124	Low-Frequency Noise Characteristics of In-Doped ZnO Ultraviolet Photodetectors. IEEE Photonics Technology Letters, 2013, 25, 2043-2046.	1.3	24
125	GaN-Based LEDs With an HT-AlN Nucleation Layer Prepared on Patterned Sapphire Substrate. IEEE Photonics Technology Letters, 2013, 25, 88-90.	1.3	5
126	Electron-Field-Emission Properties of Gallium Compound by Ammonification of Ga ₂ O\$_{3}\$ Nanowires. IEEE Nanotechnology Magazine, 2013, 12, 692-695.	1.1	1

#	Article	IF	Citations
127	\${m Ga}_{2}{m O}_{3}\$/AlGaN/GaN Heterostructure Ultraviolet Three-Band Photodetector. IEEE Sensors Journal, 2013, 13, 3462-3467.	2.4	32
128	Effect of surface modification by self-assembled monolayer on the ZnO film ultraviolet sensor. Applied Physics Letters, 2013, 103, 022101.	1.5	6
129	InGaN/GaN Multiquantum-Well Metal-Semiconductor-Metal Photodetectors With Beta-\${m Ga}_{2}{m O}_{3}\$ Cap Layers. IEEE Sensors Journal, 2013, 13, 1187-1191.	2.4	16
130	$\frac{-}{m Ga}_{2}\m O_{3}\$ Nanowires-Based Humidity Sensors Prepared on GaN/Sapphire Substrate. IEEE Sensors Journal, 2013, 13, 4891-4896.	2.4	11
131	GaN-Based Light-Emitting Diodes With Step Graded-Refractive Index $({hbox{ZnO}}) _{x}({hbox{SiO}}_{2})_{1-x}$ Micropillar Array. Journal of Display Technology, 2013, 9, 353-358.	1.3	1
132	Field-Emission and Photoelectrical Characteristics of Ga–ZnO Nanorods Photodetector. IEEE Transactions on Electron Devices, 2013, 60, 1905-1910.	1.6	39
133	Numerical Simulation of GaN-Based LEDs With Chirped Multiquantum Barrier Structure. IEEE Journal of Quantum Electronics, 2013, 49, 436-442.	1.0	11
134	UV Enhanced Field Emission for Î ² -Ga2O3 Nanowires. IEEE Electron Device Letters, 2013, 34, 701-703.	2,2	3
135	Photoelectrical and Low-Frequency Noise Characteristics of ZnO Nanorod Photodetectors Prepared on Flexible Substrate. IEEE Transactions on Electron Devices, 2013, 60, 229-234.	1.6	23
136	Dislocation reduction through nucleation and growth selectivity of metal-organic chemical vapor deposition GaN. Journal of Applied Physics, 2013, 113, 144908.	1.1	10
137	Improved Field Emission Properties of Ag-Decorated Multi-Walled Carbon Nanotubes. IEEE Photonics Technology Letters, 2013, 25, 1017-1019.	1.3	18
138	InGaP/GaAs/Ge tripleâ€junction solar cells with ZnO nanowires. Progress in Photovoltaics: Research and Applications, 2013, 21, 1645-1652.	4.4	12
139	Improved efficiency of p-type quasi-mono silicon blanket emitter solar cell by ion implantation and backside rounding. Materials Science-Poland, 2013, 31, 516-524.	0.4	0
140	Noise Properties of Fe-ZnO Nanorod Ultraviolet Photodetectors. IEEE Photonics Technology Letters, 2013, 25, 2089-2092.	1.3	16
141	Improved Carrier Distributions by Varying Barrier Thickness for InGaN/GaN LEDs. Journal of Display Technology, 2013, 9, 239-243.	1.3	13
142	Effects of Initial GaN Growth Mode on Patterned Sapphire on the Opto-Electrical Characteristics of GaN-Based Light-Emitting Diodes. Journal of Display Technology, 2013, 9, 292-296.	1.3	7
143	Amorphous InGaZnO ultraviolet phototransistors with double-stack Ga2O3/SiO2 dielectric. Applied Physics Letters, 2013, 102, .	1.5	54
144	GaN-Based Light-Emitting Diodes on Electrochemically Etched $m n^{-2}\$ GaN Template. IEEE Photonics Technology Letters, 2013, 25, 1531-1534.	1.3	5

#	Article	IF	CITATIONS
145	Synchrotron radiation based cross-sectional scanning photoelectron microscopy and spectroscopy of n-ZnO:Al/p-GaN:Mg heterojunction. Applied Physics Letters, 2013, 102, .	1.5	6
146	UV Enhanced Indium-Doped ZnO Nanorod Field Emitter. IEEE Transactions on Electron Devices, 2013, 60, 3901-3906.	1.6	12
147	GaN-Based Ultraviolet Light Emitting Diodes With Ex Situ Sputtered AlN Nucleation Layer. Journal of Display Technology, 2013, 9, 895-899.	1.3	16
148	GaN Nanowire Field Emitters With the Adsorption of Au Nanoparticles. IEEE Electron Device Letters, 2013, 34, 553-555.	2.2	7
149	AlGaInP-Based LEDs With AuBe-Diffused AZO/GaP Current Spreading Layer. IEEE Journal of Quantum Electronics, 2013, 49, 846-851.	1.0	9
150	Surface plasmon-enhanced gas sensing in single gold-peapodded silica nanowires. NPG Asia Materials, 2013, 5, e49-e49.	3.8	19
151	Influence of Weight Ratio of Poly(4-vinylphenol) Insulator on Electronic Properties of InGaZnO Thin-Film Transistor. Journal of Nanomaterials, 2012, 2012, 1-7.	1.5	10
152	High responsivity of amorphous indium gallium zinc oxide phototransistor with Ta2O5 gate dielectric. Applied Physics Letters, 2012, 101, .	1.5	67
153	Effect of Varied Undoped GaN Thickness on ESD and Optical Properties of GaN-Based LEDs. IEEE Photonics Technology Letters, 2012, 24, 800-802.	1.3	5
154	Impact of oxygen annealing on high-k gate stack defects characterized by random telegraph noise. Applied Physics Letters, 2012, 101, 122105.	1.5	10
155	A Flexible ZnO Nanowire-Based Humidity Sensor. IEEE Nanotechnology Magazine, 2012, 11, 520-525.	1.1	24
156	GaN-Based Light-Emitting Diode With Sputtered AlN Nucleation Layer. IEEE Photonics Technology Letters, 2012, 24, 294-296.	1.3	49
157	Characteristics of GaN/InGaN Double-Heterostructure Photovoltaic Cells. International Journal of Photoenergy, 2012, 2012, 1-5.	1.4	4
158	A Visible-Blind TiO2Nanowire Photodetector. Journal of the Electrochemical Society, 2012, 159, J132-J135.	1.3	41
159	Characteristics of Thin-Film-Transistors Based on Zn–In–Sn–O Thin Films Prepared by Co-Sputtering System. Materials Transactions, 2012, 53, 571-574.	0.4	1
160	Microstructural Characteristics of InGaZnO Thin Film Using an Electrical Current Method. Materials Transactions, 2012, 53, 733-738.	0.4	3
161	The Effects of Crystallization on Mechanical Mechanism and Residual Stress of Sputtered Ag Thin Films. Materials Transactions, 2012, 53, 2049-2055.	0.4	3
162	GaN-Based LEDs with a Mirror Structure and an Insulating Layer. , 2012, , .		O

#	Article	IF	CITATIONS
163	Enhanced Current Spreading for GaN-Based Side-View LEDs by Adding an Metallic Stripe Across the Long Side of the Chip. IEEE Photonics Technology Letters, 2012, 24, 1412-1414.	1.3	4
164	\${m TiO}_{2}\$ Nanowires UV Photodetectors With Ir Schottky Contacts. IEEE Photonics Technology Letters, 2012, 24, 1584-1586.	1.3	8
165	In situ grown AlN/AlGaN/GaN heterostructure field-effect transistor. , 2012, , .		0
166	Deep UV ${m Ta}_{2}{m O}_{5}$ /Zinc-Indium-Tin-Oxide Thin Film Photo-Transistor. IEEE Photonics Technology Letters, 2012, 24, 1018-1020.	1.3	23
167	Low-Frequency Noise Characteristics of GaN Schottky Barrier Photodetectors Prepared With Nickel Annealing. IEEE Sensors Journal, 2012, 12, 2824-2829.	2.4	10
168	Enhanced Field Electron Emission From Zinc-Doped CuO Nanowires. IEEE Electron Device Letters, 2012, 33, 887-889.	2.2	17
169	GaN-Based LEDs With Omnidirectional Metal Underneath an Insulating \${m SiO}_{2}\$ Layer. IEEE Photonics Technology Letters, 2012, 24, 815-817.	1.3	8
170	Fabrication and Characterization of Coaxial p-Copper Oxide/n-ZnO Nanowire Photodiodes. IEEE Nanotechnology Magazine, 2012, 11, 127-133.	1.1	52
171	Back Cover: Investigation of Ni/Ag contact to pâ€GaN with an O ₂ plasma treatment and its application to GaNâ€based LEDs (Phys. Status Solidi A 8/2012). Physica Status Solidi (A) Applications and Materials Science, 2012, 209, .	0.8	0
172	Inserting a p-InGaN layer before the p-AlGaN electron blocking layer suppresses efficiency droop in InGaN-based light-emitting diodes. Applied Physics Letters, 2012, 101, 081120.	1.5	35
173	Chemical Oxide Interfacial Layer for the High-\$k\$-Last/Gate-Last Integration Scheme. IEEE Electron Device Letters, 2012, 33, 946-948.	2.2	8
174	GaN-Based LEDs With a Chirped Multiquantum Barrier Structure. IEEE Photonics Technology Letters, 2012, 24, 1600-1602.	1.3	25
175	A Si Nanowire Photovoltaic Device Prepared by Selective Electroless Etching. IEEE Nanotechnology Magazine, 2012, 11, 1148-1150.	1.1	0
176	GaN-Based LEDs With Double Strain Releasing MQWs and Si Delta-Doping Layers. IEEE Photonics Technology Letters, 2012, 24, 1809-1811.	1.3	7
177	GaNâ€based Schottky barrier ultraviolet photodetector with a 5â€pair AlGaN–GaN intermediate layer. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 579-584.	0.8	15
178	Investigation of Ni/Ag contact to pâ€GaN with an O ₂ plasma treatment and its application to GaNâ€based LEDs. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1568-1574.	0.8	1
179	Magnetooptical Effects in Wave Properties for a Semiconductor Photonic Crystal at Near-Infrared. IEEE Photonics Journal, 2012, 4, 903-911.	1.0	11
180	CuO Nanowire-Based Humidity Sensor. IEEE Sensors Journal, 2012, 12, 1884-1888.	2.4	44

#	Article	IF	Citations
181	Tunable Multichannel Filter in a Photonic Crystal Containing Semiconductor Photonic Quantum Well. IEEE Photonics Journal, 2012, 4, 283-290.	1.0	8
182	Infrared Tunable Multichannel Filter in a Doped Semiconductor-Dielectric Photonic Crystal Heterostructure. IEEE Journal of Quantum Electronics, 2012, 48, 361-366.	1.0	1
183	A New Tri-Band Bandpass Filter Based on Stub-Loaded Step-Impedance Resonator. IEEE Microwave and Wireless Components Letters, 2012, 22, 179-181.	2.0	119
184	GaN-Based LEDs With Sapphire Debris Removed by Phosphoric Etching. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2012, 2, 349-353.	1.4	9
185	ZnO-Nanowire-Based Extended-Gate Field-Effect-Transistor pH Sensors Prepared on Glass Substrate. Science of Advanced Materials, 2012, 4, 1174-1178.	0.1	21
186	Temperature Dependence of Electrical Characteristics of Strained nMOSFETs Using Stress Memorization Technique. IEEE Electron Device Letters, 2011, 32, 835-837.	2.2	2
187	Enhancement of CMOSFETs Performance by Utilizing SACVD-Based Shallow Trench Isolation for the 40-nm Node and Beyond. IEEE Nanotechnology Magazine, 2011, 10, 433-438.	1.1	3
188	Growth and Photoelectric Properties of Twinned ZnSe $\{m \{1-x\}\}$ Te $\{m x\}$ Nanotips. IEEE Nanotechnology Magazine, 2011, 10, 379-384.	1.1	2
189	ZnSe/ZnCdSeTe Superlattice Nanotips. IEEE Nanotechnology Magazine, 2011, 10, 682-687.	1.1	O
190	GaN-Based LEDs With Air Voids Prepared by Laser Scribing and Chemical Etching. IEEE Photonics Technology Letters, 2011, 23, 1172-1174.	1.3	4
191	Isopropyl Alcohol Sensors of CuO Nanotubes by Thermal Oxidation of Copper Films on Glass. IEEE Sensors Journal, 2011, 11, 3276-3282.	2.4	5
192	A Deep UV Sensitive \${m Ta}_{2}{m O}_{5}/{m a-IGZO}\$ TFT. IEEE Sensors Journal, 2011, 11, 2902-2905.	2.4	11
193	CuO-Nanowire Field Emitter Prepared on Glass Substrate. IEEE Nanotechnology Magazine, 2011, 10, 1161-1165.	1.1	16
194	An $\{(m Al}_{m x}\{m Ga}_{1-\{m x}\})\}_{2}\{m O}_{3}$ \$ Metal-Semiconductor-Metal VUV Photodetector. IEEE Sensors Journal, 2011, 11, 1795-1799.	2.4	18
195	Origin of Stress Memorization Mechanism in Strained-Si nMOSFETs Using a Low-Cost Stress-Memorization Technique. IEEE Nanotechnology Magazine, 2011, 10, 1053-1058.	1.1	7
196	Photoconductive Gain of Vertical ZnO Nanorods on Flexible Polyimide Substrate by Low-Temperature Process. IEEE Sensors Journal, 2011, 11, 3457-3461.	2.4	15
197	GaN Schottky Barrier Photodetectors With a Lattice-Matched $m Al_{0.82}m In_{0.18}m N$ Intermediate Layer. IEEE Sensors Journal, 2011, 11, 2895-2901.	2.4	3
198	Growth of Ga $_{m 2}$ O $_{m 3}$ Nanowires and the Fabrication of Solar-Blind Photodetector. IEEE Nanotechnology Magazine, 2011, 10, 1047-1052.	1.1	40

#	Article	IF	CITATIONS
199	A \$eta\$-Ga\$_{2}\$O\$_{3}\$/GaN Schottky-Barrier Photodetector. IEEE Photonics Technology Letters, 2011, 23, 444-446.	1.3	28
200	Effect of Growth Pressure of Undoped GaN Layer on the ESD Characteristics of GaN-Based LEDs Grown on Patterned Sapphire. IEEE Photonics Technology Letters, 2011, 23, 968-970.	1.3	12
201	Nitride-Based LEDs With High-Reflectance and Wide-Angle Ag Mirror\${+}\$SiO\$_{2}\$/TiO\$_{2}\$ DBR Backside Reflector. Journal of Lightwave Technology, 2011, 29, 1033-1038.	2.7	19
202	GaN-Based LEDs With Air Voids Prepared by One-Step MOCVD Growth. Journal of Lightwave Technology, 2011, 29, 2831-2835.	2.7	9
203	Electrostatic studies of π–π interaction for benzene stacking on a graphene layer. Applied Physics Letters, 2011, 99, .	1.5	41
204	The Bias-Crystallization Mechanism on Structural Characteristics and Electrical Properties of Zn-In-Sn-O Film. Materials Transactions, 2011, 52, 1560-1564.	0.4	6
205	High-Performance a-IGZO Thin-Film Transistor with Organic Polymer Dielectric Layer., 2011, , .		3
206	AlGaInP-Based LEDs With a ${m p}^{+}$ -GaP Window Layer and a Thermally Annealed ITO Contact. IEEE Journal of Quantum Electronics, 2011, 47, 803-809.	1.0	10
207	Electrical and Optical Characteristics of UV Photodetector With Interlaced ZnO Nanowires. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 990-995.	1.9	45
208	A High-Responsivity GaN Nanowire UV Photodetector. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 996-1001.	1.9	62
209	Growth and Characterization of ZnSe/CdSe Multiquantum Disks. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 779-784.	1.9	1
210	InGaN Metal-Semiconductor-Metal Photodetectors With Aluminum Nitride Cap Layers. IEEE Journal of Quantum Electronics, 2011, 47, 1107-1112.	1.0	11
211	Simple method to design a tri-band bandpass filter using asymmetric SIRs for GSM, WIMAX, and WLAN applications. Microwave and Optical Technology Letters, 2011, 53, 1573-1576.	0.9	24
212	Terahertz temperature-dependent defect mode in a semiconductor-dielectric photonic crystal. Journal of Applied Physics, 2011, 110, .	1.1	72
213	InGaN metal-semiconductor-metal photodetectors with triethylgallium precursor and unactivated Mg-doped GaN cap layers. Journal of Applied Physics, 2011, 110, .	1.1	6
214	AlGaN/GaN metal-insulator-semiconductor heterostructure field-effect transistor with an in-situ AlN cap layer. Applied Physics Letters, 2011, 99, 153505.	1.5	3
215	Influences of surface reconstruction on the atomic-layer-deposited HfO2/Al2O3/n-InAs metal-oxide-semiconductor capacitors. Applied Physics Letters, 2011, 98, 123509.	1.5	19
216	A \$eta\$-\${m Ga}_{2} {m O} _{3}\$/GaN Hetero-Structured Solar-Blind and Visible-Blind Dual-Band Photodetector. IEEE Sensors Journal, 2011, 11, 1491-1492.	2.4	21

#	Article	IF	CITATIONS
217	GaN Schottky Barrier Photodetectors. IEEE Sensors Journal, 2010, 10, 1609-1614.	2.4	9
218	High-Sensitivity Nitride-Based Ultraviolet Photosensors with a Low-Temperature AlGaN Interlayer. Journal of Electronic Materials, 2010, 39, 29-33.	1.0	1
219	An investigation of the microstructure, optical and electrical properties of ZITO thin film using the sol–gel method. Journal of Sol-Gel Science and Technology, 2010, 54, 347-354.	1.1	14
220	Improvement of Poly-Pimple-Induced Device Mismatch on 6T-SRAM at 65-nm CMOS Technology. IEEE Transactions on Electron Devices, 2010, 57, 956-959.	1.6	1
221	Improved Performance of GaN-Based Blue LEDs With the InGaN Insertion Layer Between the MQW Active Layer and the n-GaN Cladding Layer. IEEE Journal of Quantum Electronics, 2010, 46, 513-517.	1.0	34
222	AlGaInP LEDs Prepared by Contact-Transferred and Mask-Embedded Lithography. IEEE Journal of Quantum Electronics, 2010, 46, 1834-1839.	1.0	10
223	Surface Characteristics, Optical and Electrical Properties on Sol-Gel Synthesized Sn-Doped ZnO Thin Film. Materials Transactions, 2010, 51, 1340-1345.	0.4	57
224	Impact of stress-memorization technique induced-tensile strain on low frequency noise in n-channel metal-oxide-semiconductor transistors. Applied Physics Letters, 2010, 97, 123501.	1.5	12
225	III-Nitride Schottky Rectifiers With an AlGaN/GaN/AlGaN/GaN Quadruple Layer and Their Applications to UV Detection. IEEE Sensors Journal, 2010, 10, 799-804.	2.4	2
226	A Lateral ZnO Nanowire Photodetector Prepared on Glass Substrate. Journal of the Electrochemical Society, 2010, 157, K30.	1.3	61
227	AlGaN/GaN high electron mobility transistors based on InGaN/GaN multiquantum-well structures. Applied Physics Letters, 2010, 96, .	1.5	12
228	Dependence of DC Parameters on Layout and Low-Frequency Noise Behavior in Strained-Si nMOSFETs Fabricated by Stress-Memorization Technique. IEEE Electron Device Letters, 2010, 31, 500-502.	2.2	8
229	GaN Metal–Semiconductor–Metal Photodetectors Prepared on Nanorod Template. IEEE Photonics Technology Letters, 2010, 22, 625-627.	1.3	7
230	A Solar-Blind \$eta\$-Ga\$_2\$O\$_3\$ Nanowire Photodetector. IEEE Photonics Technology Letters, 2010, 22, 709-711.	1.3	47
231	GaN-Based Power Flip-Chip LEDs With an Internal ESD Protection Diode on Cu Sub-Mount. IEEE Transactions on Advanced Packaging, 2010, 33, 433-437.	1.7	9
232	High temperature characteristics of ZnO-based MOS-FETs with photochemical vapor deposition SiO <inf>2</inf> gate oxide., 2009,,.		0
233	ZnO Nanowire-Based Oxygen Gas Sensor. IEEE Sensors Journal, 2009, 9, 485-489.	2.4	58
234	High-Speed InGaAs P-I-N Photodetector With Planar Buried Heterostructure. IEEE Transactions on Electron Devices, 2009, 56, 1347-1350.	1.6	11

#	Article	lF	CITATIONS
235	GaN-Based Power Flip-Chip LEDs With Cu Submount. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 1287-1291.	1.9	6
236	High-Brightness InGaN–GaN Power Flip-Chip LEDs. Journal of Lightwave Technology, 2009, 27, 1985-1989.	2.7	12
237	Quaternary AllnGaN photodetectors with MIS structure. , 2009, , .		0
238	AlGaN/GaN Schottky Barrier UV Photodetectors With a GaN Sandwich Layer. IEEE Sensors Journal, 2009, 9, 814-819.	2.4	12
239	Characterization of AlGaN/GaN Metal- Semiconductor-Metal Photodetectors With a Low-Temperature AlGaN Interlayer. IEEE Sensors Journal, 2009, 9, 723-727.	2.4	14
240	AlGaN/GaN Schottky Barrier Photodetector With Multi- ${m Mg}_{m x} {m N}_{m y} $/GaN$ Buffer. IEEE Sensors Journal, 2009, 9, 87-92.	2.4	14
241	Electroluminescence from n-ZnO nanowires/p-GaN heterostructure light-emitting diodes. Applied Physics Letters, 2009, 95, .	1.5	99
242	Optoelectronic Characteristics of UV Photodetector Based on ZnO Nanopillar Thin Films Prepared by Sol-Gel Method. Materials Transactions, 2009, 50, 922-925.	0.4	14
243	Two-Step Etching Mechanism of Ag-Si Nanostructure with Various Ag Nanoshape Depositions. Materials Transactions, 2009, 50, 1992-1997.	0.4	0
244	Nonâ€lithographic nanopatterning of InGaN/GaN multiple quantum well nanopillars by focused ion beams. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 2186-2188.	0.8	2
245	The CL emission observation of the InGaN/GaN MQWs V shaped pits with different superlattices underlayers. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 1639-1641.	0.8	7
246	Highly sensitive ZnO nanowire CO sensors with the adsorption of Au nanoparticles. Nanotechnology, 2008, 19, 175502.	1.3	194
247	A ZnO nanowire vacuum pressure sensor. Nanotechnology, 2008, 19, 095505.	1.3	47
248	GaN Schottky barrier photodetectors with multi-MgN/GaN buffer. , 2008, , .		0
249	Improved External Quantum Efficiency of GaN p-i-n Photodiodes With a TiO\$_{2}\$ Roughened Surface. IEEE Photonics Technology Letters, 2008, 20, 285-287.	1.3	1
250	GaN photodetectors prepared on silicon and sapphire substrates. , 2008, , .		1
251	The challenge of commercialized crystalline silicon solar cell. , 2008, , .		2
252	ZnO nanowire-based oxygen gas sensor. , 2008, , .		2

#	Article	IF	CITATIONS
253	A novel miniature dual-mode filter based on modified sierpinski fractal resonator., 2008,,.		2
254	High quality GaN-based Schottky barrier diodes. Applied Physics Letters, 2008, 93, 132110.	1.5	15
255	High Performance InGaAs PIN Photodetector. , 2007, , .		0
256	Crabwise ZnO Nanowire UV Photodetector Prepared on ZnO : Ga/Glass Template. IEEE Nanotechnology Magazine, 2007, 6, 595-600.	1.1	13
257	AlGaN Ultraviolet Metal–Semiconductor–Metal Photodetectors with Low-Temperature-Grown Cap Layers. Japanese Journal of Applied Physics, 2007, 46, 2471-2473.	0.8	6
258	GaN-Based Power LEDs With CMOS ESD Protection Circuits. IEEE Transactions on Device and Materials Reliability, 2007, 7, 340-346.	1.5	15
259	High-Detectivity Nitride-Based MSM Photodetectors on InGaN–GaN Multiquantum Well With the Unactivated Mg-Doped GaN Layer. IEEE Journal of Quantum Electronics, 2007, 43, 1060-1064.	1.0	16
260	Low-Noise and High-Detectivity GaN UV Photodiodes With a Low-Temperature AlN Cap Layer. IEEE Sensors Journal, 2007, 7, 1289-1292.	2.4	22
261	Noise Characteristics of ZnO-Nanowire Photodetectors Prepared on ZnO:Ga/Glass Templates. IEEE Sensors Journal, 2007, 7, 1020-1024.	2.4	18
262	The Optimized Geometry of the SiGe HBT Power Cell for 802.11a WLAN Applications. IEEE Microwave and Wireless Components Letters, 2007, 17, 49-51.	2.0	13
263	Gallium nitride metal-semiconductor-metal photodetectors prepared on silicon substrates. Journal of Applied Physics, 2007, 102, .	1.1	32
264	InGaN/GaN MQW structures prepared with various In and Ga flow rates. International Journal of Electronics, 2007, 94, 1-7.	0.9	0
265	Nitride-Based Schottky Barrier Sensor Module With High Electrostatic Discharge Reliability. IEEE Photonics Technology Letters, 2007, 19, 717-719.	1.3	3
266	Nitride-Based High-Power Flip-Chip LED With Double-Side Patterned Sapphire Substrate. IEEE Photonics Technology Letters, 2007, 19, 780-782.	1.3	75
267	InGaN–GaN MQW Metal–Semiconductor–Metal Photodiodes With Semi-Insulating Mg-Doped GaN Cap Layers. IEEE Photonics Technology Letters, 2007, 19, 846-848.	1.3	10
268	Highly Reliable High-Brightness GaN-Based Flip Chip LEDs. IEEE Transactions on Advanced Packaging, 2007, 30, 752-757.	1.7	18
269	Low-Noise and High-Detectivity GaN-Based UV Photodiode With a Semi-Insulating Mg-Doped GaN Cap Layer. IEEE Sensors Journal, 2007, 7, 1270-1273.	2.4	15
270	Ir/Pt Schottky contact oxidation for nitride-based Schottky barrier diodes. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 1625-1628.	0.8	7

#	Article	IF	Citations
271	Automated passive filter synthesis using a novel tree representation and genetic programming. IEEE Transactions on Evolutionary Computation, 2006, 10, 93-100.	7.5	55
272	Nitride-Based Light Emitting Diodes With Textured Sidewalls and Pillar Waveguides. IEEE Photonics Technology Letters, 2006, 18, 2517-2519.	1.3	23
273	Enhanced CMOS performances using substrate strained-SiGe and mechanical strained-Si technology. IEEE Electron Device Letters, 2006, 27, 46-48.	2.2	13
274	Nitride-based light emitting diodes with quaternary p-AllnGaN surface layers. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 2153-2155.	0.8	0
275	Room temperature photo-CVD SiO2layers on AlGaN and AlGaN/GaN MOS-HFETs. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 404-409.	0.8	5
276	Practical impedance matching using genetic programming. Microwave and Optical Technology Letters, 2006, 48, 375-377.	0.9	2
277	Controlled Self-formation of GaN Nanotubes by Inductively Coupled Plasmas Etching. , 2006, , .		0
278	Inductively coupled plasma etching of Si1â°'xGex in CF4â°•Ar and Cl2â°•Ar discharges. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006, 24, 728-731.	0.9	0
279	Strained-Si nMOSFETs with Ni Silicide. , 2006, , .		0
280	Imapct of SiN on Performance in Novel CMOS Architecture Using Substrate Strained-SiGe and Mechanical Strained-Si Technology. , 2006, , .		0
281	A Ku-band four-stage temperature compensated PHEMT MMIC power amplifier. Microwave and Optical Technology Letters, 2005, 44, 480-485.	0.9	8
282	Ka-band 1-W PHEMT MMIC power amplifiers on 2mil-thick GaAs substrates. Microwave and Optical Technology Letters, 2005, 45, 181-185.	0.9	1
283	Effect of Au distribution in NiO/Au film on the ohmic contact formation to p-type GaN. Journal of Materials Research, 2005, 20, 456-463.	1.2	2
284	Ultra small self-organized nitride nanotips. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 2496.	1.6	7
285	Nitride-based LEDs with MQW active regions grown by different temperature profiles. IEEE Photonics Technology Letters, 2005, 17, 1806-1808.	1.3	12
286	Vertical Single-Crystal ZnO Nanowires Grown on ZnO : Ga/Glass Templates. IEEE Nanotechnology Magazine, 2005, 4, 649-654.	1.1	47
287	lon-implantation technology for improved GaAs MESFETs performance. Journal of Materials Science: Materials in Electronics, 2004, 15, 91-93.	1.1	4
288	InGaN/GaN multi-quantum dot light-emitting diodes. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 2405-2408.	0.8	2

#	Article	IF	CITATIONS
289	A three-stage Ka band PHEMT wideband amplifier MMIC. Microwave and Optical Technology Letters, 2004, 42, 277-280.	0.9	1
290	A Ka-band PHEMT diode double-balanced star mixer MMIC. Microwave and Optical Technology Letters, 2004, 42, 455-458.	0.9	2
291	Influences of <tex>\$delta \$</tex> -Doping Position on the Characteristics of SiGe–Si DCFETs. IEEE Electron Device Letters, 2004, 25, 477-479.	2.2	1
292	Growth of InGaN self-assembled quantum dots and their application to photodiodes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 792.	0.9	5
293	The Effect of Geometry on the Noise Characterization of SiGe HBTs and Optimized Device Sizes for the Design of Low-Noise Amplifiers. IEEE Transactions on Microwave Theory and Techniques, 2004, 52, 2153-2162.	2.9	12
294	The properties of photo chemical-vapor deposition SiO2 and its application in GaN metal-insulator semiconductor ultraviolet photodetectors. Journal of Electronic Materials, 2003, 32, 395-399.	1.0	27
295	Nitride-Based ultraviolet metal-semiconductor-metal photodetectors with a low-temperature GaN layer. Journal of Electronic Materials, 2003, 32, 400-402.	1.0	10
296	InGaN/GaN light-emitting diodes with a reflector at the backside of sapphire substrates. Journal of Electronic Materials, 2003, 32, 403-406.	1.0	21
297	AlGaN/GaN metal-oxide semiconductor heterostructure field-effect transistor with photo-chemical-vapor deposition SiO2 gate oxide. Journal of Electronic Materials, 2003, 32, 407-410.	1.0	17
298	InGaN/GaN LEDs with a Si-doped InGaN/GaN short-period superlattice tunneling contact layer. Journal of Electronic Materials, 2003, 32, 411-414.	1.0	0
299	Nitride-based near-ultraviolet multiple-quantum well light-emitting diodes with AlGaN barrier layers. Journal of Electronic Materials, 2003, 32, 415-418.	1.0	2
300	InGaN/GaN multiple quantum well green light-emitting diodes prepared by temperature ramping. Journal of Electronic Materials, 2003, 32, 419-422.	1.0	9
301	High electrostatic discharge protection of InGaN/GaN MQW LEDs by using GaN Schottky diodes. Physica Status Solidi A, 2003, 200, 91-94.	1.7	6
302	InGaN/GaN multiple-quantum-well dual-wavelength near-white light emitting diodes. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 2257-2260.	0.8	7
303	Low interface state density AlGaN/GaN MOSHFETs with photochemical vapor deposition SiO2 layers. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 2355-2359.	0.8	9
304	High detectivity InGaN-GaN multiquantum well p-n junction photodiodes. IEEE Journal of Quantum Electronics, 2003, 39, 681-685.	1.0	67
305	Flicker noise of GaN-based heterostructure field-effect transistors with Si-doped AlGaN carrier injection layer. IEEE Electron Device Letters, 2003, 24, 622-624.	2.2	17
306	SiGe heterostructure field-effect transistor using V-shaped confining potential well. IEEE Electron Device Letters, 2003, 24, 69-71.	2.2	14

#	Article	IF	Citations
307	Deposition of SiO[sub 2] layers on 4H–SiC by photochemical vapor deposition. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 329.	1.6	10
308	AlGaInP-sapphire glue bonded light-emitting diodes. IEEE Journal of Quantum Electronics, 2002, 38, 1390-1394.	1.0	13
309	InGaN-AllnGaN multiquantum-well LEDs. IEEE Photonics Technology Letters, 2001, 13, 559-561.	1.3	100
310	Dark Currents in HgCdTe Photodiodes Passivated with ZnS/CdS. Journal of the Electrochemical Society, 1999, 146, 1540-1545.	1.3	12
311	Si field-effect transistor with doping dipole in buffer layer. Applied Physics Letters, 1999, 75, 2848-2850.	1.5	4
312	Reactive ion etching for AlGalnP/GalnP laser structures. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1998, 16, 2031-2036.	0.9	4
313	A novel waveguide structure to reduce beam divergence and threshold current in GalnP/AlGalnP visible quantum-well lasers. Applied Physics Letters, 1997, 71, 2245-2247.	1.5	4
314	Photoluminescence of Erbium Implanted in SiGe. Materials Research Society Symposia Proceedings, 1996, 422, 131.	0.1	1
315	Neodymium-doped GaAs Light-emitting Diodes. Materials Research Society Symposia Proceedings, 1996, 422, 351.	0.1	0
316	Studies of polymer ball type polymer dispersed liquid crystal films. Materials Research Society Symposia Proceedings, 1996, 425, 287.	0.1	1
317	Studies of polymer ball type polymer dispersed liquid crystal films. Liquid Crystals, 1996, 21, 19-23.	0.9	17
318	Relaxation time of polymer ball type PDLC films. Liquid Crystals, 1996, 21, 707-711.	0.9	4
319	High quality ZnO thin films on InP substrates prepared by radio frequency magnetron sputtering. I. Material study. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1995, 13, 381-384.	0.9	16
320	High quality ZnO thin films on InP substrates prepared by radio frequency magnetron sputtering. II. Surface acoustic wave device fabrication. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1995, 13, 385-388.	0.9	50
321	Neodymiumâ€doped GaAs lightâ€emitting diodes. Journal of Applied Physics, 1995, 78, 4279-4281.	1.1	7
322	Polymer dispersed liquid crystal display device for projection high definition television application. Macromolecular Symposia, 1994, 84, 159-166.	0.4	2
323	Economical Passive Filter Synthesis Using Genetic Programming Based on Tree Representation., 0,,.		3
324	Imapct of SiN on Performance in Novel CMOS Architecture Using Substrate Strained-SiGe and Mechanical Strained-Si Technology. , 0, , .		0

#	Article	IF	CITATIONS
325	Strained-Si nMOSFETs with Ni Silicide. , 0, , .		O
326	Imapct of SiN on Performance in Novel CMOS Architecture Using Substrate Strained-SiGe and Mechanical Strained-Si Technology. , 0, , .		0
327	Strained-Si nMOSFETs with Ni Silicide. , 0, , .		O