List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5703746/publications.pdf Version: 2024-02-01



ALLISON M OKAMURA

2

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Geometric Solutions for General Actuator Routing on Inflated-Beam Soft Growing Robots. IEEE<br>Transactions on Robotics, 2022, 38, 1820-1840.                                                             | 7.3 | 8         |
| 2  | Data-Driven Sparse Skin Stimulation Can Convey Social Touch Information to Humans. IEEE<br>Transactions on Haptics, 2022, 15, 392-404.                                                                    | 1.8 | 8         |
| 3  | Perceived Intensities of Normal and Shear Skin Stimuli Using a Wearable Haptic Bracelet. IEEE Robotics and Automation Letters, 2022, 7, 6099-6106.                                                        | 3.3 | 7         |
| 4  | A 4-Degree-of-Freedom Parallel Origami Haptic Device for Normal, Shear, and Torsion Feedback. IEEE<br>Robotics and Automation Letters, 2022, 7, 3310-3317.                                                | 3.3 | 6         |
| 5  | Predicting Hand-Object Interaction for Improved Haptic Feedback in Mixed Reality. IEEE Robotics and Automation Letters, 2022, 7, 3851-3857.                                                               | 3.3 | 4         |
| 6  | Design of a Wearable Vibrotactile Stimulation Device for Individuals With Upper-Limb Hemiparesis and Spasticity. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 1277-1287. | 2.7 | 3         |
| 7  | FingerPrint: A 3-D Printed Soft Monolithic 4-Degree-of-Freedom Fingertip Haptic Device with Embedded Actuation. , 2022, , .                                                                               |     | 7         |
| 8  | A Lightweight, High-Extension, Planar 3-Degree-of-Freedom Manipulator Using Pinched Bistable Tapes. ,<br>2022, , .                                                                                        |     | 1         |
| 9  | Task-Specific Design Optimization and Fabrication for Inflated-Beam Soft Robots with Growable Discrete Joints. , 2022, , .                                                                                |     | 2         |
| 10 | Effects of Peripheral Haptic Feedback on Intracortical Brain-Computer Interface Control and Associated Sensory Responses in Motor Cortex. IEEE Transactions on Haptics, 2021, 14, 762-775.                | 1.8 | 5         |
| 11 | Body-Mounted Vibrotactile Stimuli: Simultaneous Display of Taps on the Fingertips and Forearm. IEEE<br>Transactions on Haptics, 2021, 14, 432-444.                                                        | 1.8 | 6         |
| 12 | Distributed Sensor Networks Deployed Using Soft Growing Robots. , 2021, , .                                                                                                                               |     | 5         |
| 13 | Teleoperation of an Ankle-Foot Prosthesis With a Wrist Exoskeleton. IEEE Transactions on Biomedical<br>Engineering, 2021, 68, 1714-1725.                                                                  | 2.5 | 8         |
| 14 | Affective Ratings of Vibrotactile Signals in Older Adults With and Without History of Stroke. , 2021, , .                                                                                                 |     | 2         |
| 15 | Human Perception of Wrist Torque Magnitude During Upper and Lower Extremity Movement. , 2021, , .                                                                                                         |     | 0         |
| 16 | Augmented Haptic Guidance for Needle Insertion with a 2-DoF Wrist-Worn Haptic Device. , 2021, , .                                                                                                         |     | 0         |
| 17 | Embedded Laser-Cut Constraints for Elastomeric Soft Actuators. , 2021, , .                                                                                                                                |     | 0         |
|    |                                                                                                                                                                                                           |     |           |

Augmented Needle Decompression Task with a Wrist-Worn Haptic Device. , 2021, , .

| #  | Article                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Teaching With Hapkit: Enabling Online Haptics Courses With Hands-On Laboratories. IEEE Robotics and Automation Magazine, 2021, 28, 79-91.                               | 2.2 | 3         |
| 20 | A Dynamics Simulator for Soft Growing Robots. , 2021, , .                                                                                                               |     | 2         |
| 21 | Macro-Mini Actuation of Pneumatic Pouches for Soft Wearable Haptic Displays. , 2021, , .                                                                                |     | 3         |
| 22 | Evolution and Analysis of Hapkit: An Open-Source Haptic Device for Educational Applications. IEEE<br>Transactions on Haptics, 2020, 13, 354-367.                        | 1.8 | 10        |
| 23 | Vine Robots. IEEE Robotics and Automation Magazine, 2020, 27, 120-132.                                                                                                  | 2.2 | 97        |
| 24 | Dynamically Reconfigurable Discrete Distributed Stiffness for Inflated Beam Robots. , 2020, , .                                                                         |     | 18        |
| 25 | Evaluation of Non-collocated Force Feedback Driven by Signal-independent Noise. , 2020, , .                                                                             |     | 0         |
| 26 | Design, Modeling, Control, and Application of Everting Vine Robots. Frontiers in Robotics and AI, 2020, 7, 548266.                                                      | 2.0 | 33        |
| 27 | Task Dynamics of Prior Training Influence Visual Force Estimation Ability During Teleoperation. IEEE<br>Transactions on Medical Robotics and Bionics, 2020, 2, 586-597. | 2.1 | 5         |
| 28 | Human Interface for Teleoperated Object Manipulation with a Soft Growing Robot. , 2020, , .                                                                             |     | 16        |
| 29 | Continuous Closed-Loop 4-Degree-of-Freedom Holdable Haptic Guidance. IEEE Robotics and Automation Letters, 2020, 5, 6853-6860.                                          | 3.3 | 5         |
| 30 | Investigating Social Haptic Illusions for Tactile Stroking (SHIFTS). , 2020, , .                                                                                        |     | 15        |
| 31 | AFREEs: Active Fiber Reinforced Elastomeric Enclosures. , 2020, , .                                                                                                     |     | 6         |
| 32 | Robust navigation of a soft growing robot by exploiting contact with the environment. International<br>Journal of Robotics Research, 2020, 39, 1724-1738.               | 5.8 | 42        |
| 33 | An untethered isoperimetric soft robot. Science Robotics, 2020, 5, .                                                                                                    | 9.9 | 72        |
| 34 | 3D Electromagnetic Reconfiguration Enabled by Soft Continuum Robots. IEEE Robotics and Automation Letters, 2020, 5, 1704-1711.                                          | 3.3 | 12        |
| 35 | Efficient and Trustworthy Social Navigation via Explicit and Implicit Robot–Human Communication.<br>IEEE Transactions on Robotics, 2020, 36, 692-707.                   | 7.3 | 56        |
| 36 | Model-Based Design of a Soft 3-DÂHaptic Shape Display. IEEE Transactions on Robotics, 2020, 36, 613-628.                                                                | 7.3 | 20        |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Upper Extremity Exomuscle for Shoulder Abduction Support. IEEE Transactions on Medical Robotics and Bionics, 2020, 2, 474-484.                                                                    | 2.1 | 26        |
| 38 | A Tip Mount for Transporting Sensors and Tools using Soft Growing Robots. , 2020, , .                                                                                                             |     | 21        |
| 39 | 3-DoF Wearable, Pneumatic Haptic Device to Deliver Normal, Shear, Vibration, and Torsion Feedback. ,<br>2019, , .                                                                                 |     | 12        |
| 40 | Holdable Haptic Device for 4-DOF Motion Guidance. , 2019, , .                                                                                                                                     |     | 16        |
| 41 | Design and Analysis of Pneumatic 2-DoF Soft Haptic Devices for Shear Display. IEEE Robotics and Automation Letters, 2019, 4, 1365-1371.                                                           | 3.3 | 25        |
| 42 | Resonant Frequency Skin Stretch for Wearable Haptics. IEEE Transactions on Haptics, 2019, 12, 247-256.                                                                                            | 1.8 | 3         |
| 43 | Soft Haptic Device to Render the Sensation of Flying Like a Drone. IEEE Robotics and Automation Letters, 2019, 4, 2524-2531.                                                                      | 3.3 | 18        |
| 44 | Perception of a Wearable Haptic Feedback Device to Render the Sensation of Flight. , 2019, , .                                                                                                    |     | 1         |
| 45 | Understanding Continuous and Pleasant Linear Sensations on the Forearm From a Sequential Discrete<br>Lateral Skin-Slip Haptic Device. IEEE Transactions on Haptics, 2019, 12, 414-427.            | 1.8 | 10        |
| 46 | Effects of Different Hand-Grounding Locations on Haptic Performance With a Wearable Kinesthetic<br>Haptic Device. IEEE Robotics and Automation Letters, 2019, 4, 351-358.                         | 3.3 | 7         |
| 47 | Stiffness Control of Deformable Robots Using Finite Element Modeling. IEEE Robotics and Automation Letters, 2019, 4, 469-476.                                                                     | 3.3 | 17        |
| 48 | A Soft, Steerable Continuum Robot That Grows via Tip Extension. Soft Robotics, 2019, 6, 95-108.                                                                                                   | 4.6 | 130       |
| 49 | Evaluation of Skin Deformation Tactile Feedback for Teleoperated Surgical Tasks. IEEE Transactions on Haptics, 2019, 12, 102-113.                                                                 | 1.8 | 32        |
| 50 | Comparison Between Force-Controlled Skin Deformation Feedback and Hand-Grounded Kinesthetic<br>Force Feedback for Sensory Substitution. IEEE Robotics and Automation Letters, 2018, 3, 2174-2181. | 3.3 | 8         |
| 51 | A Tip-Extending Soft Robot Enables Reconfigurable and Deployable Antennas. IEEE Robotics and Automation Letters, 2018, 3, 949-956.                                                                | 3.3 | 66        |
| 52 | Haptics: The Present and Future of Artificial Touch Sensation. Annual Review of Control, Robotics, and Autonomous Systems, 2018, 1, 385-409.                                                      | 7.5 | 226       |
| 53 | Haptic orientation guidance using two parallel double-gimbal control moment gyroscopes. IEEE Transactions on Haptics, 2018, 11, 267-278.                                                          | 1.8 | 22        |
| 54 | Gaussian Process Dynamic Programming for Optimizing Ungrounded Haptic Guidance. , 2018, , .                                                                                                       |     | 2         |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Haptic Dimensions of Human-Robot Interaction. ACM Transactions on Human-Robot Interaction, 2018, 7, 1-3.                                                                                                | 3.2 | 7         |
| 56 | Facilitating Human-Mobile Robot Communication via Haptic Feedback and Gesture Teleoperation. ACM<br>Transactions on Human-Robot Interaction, 2018, 7, 1-23.                                             | 3.2 | 13        |
| 57 | Scaling Inertial Forces to Alter Weight Perception in Virtual Reality. , 2018, , .                                                                                                                      |     | 7         |
| 58 | Effects of Latency and Refresh Rate on Force Perception via Sensory Substitution by Force-Controlled<br>Skin Deformation Feedback. , 2018, , .                                                          |     | 0         |
| 59 | Obstacle-Aided Navigation of a Soft Growing Robot. , 2018, , .                                                                                                                                          |     | 35        |
| 60 | Magnified Force Sensory Substitution for Telemanipulation via Force-Controlled Skin Deformation. , 2018, , .                                                                                            |     | 4         |
| 61 | APAM: Antagonistic Pneumatic Artificial Muscle. , 2018, , .                                                                                                                                             |     | 34        |
| 62 | Robotic Assistance-as-Needed for Enhanced Visuomotor Learning in Surgical Robotics Training: An<br>Experimental Study. , 2018, , .                                                                      |     | 27        |
| 63 | HapWRAP: Soft Growing Wearable Haptic Device. , 2018, , .                                                                                                                                               |     | 33        |
| 64 | A social haptic device to create continuous lateral motion using sequential normal indentation. , 2018, , .                                                                                             |     | 57        |
| 65 | Comparing proprioceptive acuity in the arm between joint space and task space. , 2018, , .                                                                                                              |     | 4         |
| 66 | Helical actuation on a soft inflated robot body. , 2018, , .                                                                                                                                            |     | 31        |
| 67 | Toward the Design of Personalized Continuum Surgical Robots. Annals of Biomedical Engineering, 2018, 46, 1522-1533.                                                                                     | 1.3 | 23        |
| 68 | Deformable Model-Based Methods for Shape Control of a Haptic Jamming Surface. IEEE Transactions on Visualization and Computer Graphics, 2017, 23, 1029-1041.                                            | 2.9 | 25        |
| 69 | Three-Dimensional Skin Deformation as Force Substitution: Wearable Device Design and Performance<br>During Haptic Exploration of Virtual Environments. IEEE Transactions on Haptics, 2017, 10, 418-430. | 1.8 | 82        |
| 70 | Design of a Compact Actuation and Control System for Flexible Medical Robots. IEEE Robotics and Automation Letters, 2017, 2, 1579-1585.                                                                 | 3.3 | 29        |
| 71 | Highly Articulated Robotic Needle Achieves Distributed Ablation of Liver Tissue. IEEE Robotics and Automation Letters, 2017, 2, 1367-1374.                                                              | 3.3 | 28        |
|    |                                                                                                                                                                                                         |     |           |

72 Fingertip Tactile Devices for Virtual Object Manipulation and Exploration. , 2017, , .

| #  | Article                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A soft robot that navigates its environment through growth. Science Robotics, 2017, 2, .                                                               | 9.9 | 603       |
| 74 | Design of patient-specific concentric tube robots using path planning from 3-D ultrasound. , 2017, 2017, 165-168.                                      |     | 14        |
| 75 | Series pneumatic artificial muscles (sPAMs) and application to a soft continuum robot. , 2017, 2017, 5503-5510.                                        |     | 111       |
| 76 | Open source, modular, customizable, 3-D printed kinesthetic haptic devices. , 2017, , .                                                                |     | 11        |
| 77 | Training in divergent and convergent force fields during 6-DOF teleoperation with a robot-assisted surgical system. , 2017, , .                        |     | 20        |
| 78 | Analysis of effective impedance transmitted to the operator in position-exchange bilateral teleoperation. , 2017, , .                                  |     | 4         |
| 79 | Exomuscle: An inflatable device for shoulder abduction support. , 2017, , .                                                                            |     | 35        |
| 80 | WRAP: Wearable, restricted-aperture pneumatics for haptic guidance. , 2017, , .                                                                        |     | 42        |
| 81 | Simulating the impact of sensorimotor deficits on reaching performance. , 2017, 2017, 31-37.                                                           |     | 10        |
| 82 | Design of a soft catheter for low-force and constrained surgery. , 2017, , .                                                                           |     | 25        |
| 83 | Propagation of joint space quantization error to operational space coordinates and their derivatives. , 2017, , .                                      |     | 2         |
| 84 | Perception of force and stiffness in the presence of low-frequency haptic noise. PLoS ONE, 2017, 12, e0178605.                                         | 1.1 | 14        |
| 85 | Modeling of Bioinspired Apical Extension in a Soft Robot. Lecture Notes in Computer Science, 2017, , 522-531.                                          | 1.0 | 39        |
| 86 | Design and implementation of a 300% strain soft artificial muscle. , 2016, , .                                                                         |     | 91        |
| 87 | Closed-loop shape control of a Haptic Jamming deformable surface. , 2016, , .                                                                          |     | 24        |
| 88 | Comparison of kinesthetic and skin deformation feedback for mass rendering. , 2016, , .                                                                |     | 9         |
| 89 | End Effector for a Kinesthetic Haptic Device Capable of Displaying Variable Size and Stiffness. Lecture<br>Notes in Computer Science, 2016, , 363-372. | 1.0 | 2         |
| 90 | Motor learning affects car-to-driver handover in automated vehicles. Science Robotics, 2016, 1, .                                                      | 9.9 | 82        |

| #   | Article                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | A dual-flywheel ungrounded haptic feedback system provides single-axis moment pulses for clear direction signals. , 2016, , .                                       |     | 11        |
| 92  | Modeling and design of asymmetric vibrations to induce ungrounded pulling sensation through asymmetric skin displacement. , 2016, , .                               |     | 32        |
| 93  | 3-D printed haptic devices for educational applications. , 2016, , .                                                                                                |     | 38        |
| 94  | Design of 3-D Printed Concentric Tube Robots. IEEE Transactions on Robotics, 2016, 32, 1419-1430.                                                                   | 7.3 | 47        |
| 95  | Surgeon design interface for patient-specific concentric tube robots. , 2016, 2016, 41-48.                                                                          |     | 11        |
| 96  | Haptic technologies for direct touch in virtual reality. , 2016, , .                                                                                                |     | 13        |
| 97  | Two is not always better than one: Effects of teleoperation and haptic coupling. , 2016, , .                                                                        |     | 14        |
| 98  | Plane Assist: The Influence of Haptics on Ultrasound-Based Needle Guidance. Lecture Notes in<br>Computer Science, 2016, , 370-377.                                  | 1.0 | 7         |
| 99  | Toward human-robot collaboration in surgery: Performance assessment of human and robotic agents in an inclusion segmentation task. , 2016, , .                      |     | 16        |
| 100 | A Framework for Multilateral Manipulation in Surgical Tasks. IEEE Transactions on Automation Science and Engineering, 2016, 13, 68-77.                              | 3.4 | 14        |
| 101 | Noise, But Not Uncoupled Stability, Reduces Realism and Likeability of Bilateral Teleoperation. IEEE<br>Robotics and Automation Letters, 2016, 1, 562-569.          | 3.3 | 4         |
| 102 | Methods for Improving the Curvature of Steerable Needles in Biological Tissue. IEEE Transactions on<br>Biomedical Engineering, 2016, 63, 1167-1177.                 | 2.5 | 43        |
| 103 | Stability and quantization-error analysis of haptic rendering of virtual stiffness and damping.<br>International Journal of Robotics Research, 2016, 35, 1103-1120. | 5.8 | 32        |
| 104 | Impact of Combined Stimuli on the Perception of Transient Forces. Lecture Notes in Computer Science, 2016, , 416-426.                                               | 1.0 | 0         |
| 105 | Models of human-centered automation in a debridement task. , 2015, , .                                                                                              |     | 7         |
| 106 | A paced shared-control teleoperated architecture for supervised automation of multilateral surgical tasks. , 2015, , .                                              |     | 17        |
| 107 | Design and evaluation of a trilateral shared-control architecture for teleoperated training robots. , 2015, 2015, 4887-93.                                          |     | 14        |
| 108 | Controllable Surface Haptics via Particle Jamming and Pneumatics. IEEE Transactions on Haptics, 2015, 8, 20-30.                                                     | 1.8 | 70        |

| #   | Article                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Learning and generalization in an isometric visuomotor task. Journal of Neurophysiology, 2015, 113, 1873-1884.                                            | 0.9 | 21        |
| 110 | Tactor-Induced Skin Stretch as a Sensory Substitution Method in Teleoperated Palpation. IEEE<br>Transactions on Human-Machine Systems, 2015, 45, 714-726. | 2.5 | 37        |
| 111 | Motor learning transfer from isometric to dynamic reaching. , 2015, , .                                                                                   |     | 1         |
| 112 | Remote electromagnetic vibration of steerable needles for imaging in power Doppler ultrasound. , 2015, 2015, 2244-2249.                                   |     | 5         |
| 113 | A single-use haptic palpation probe for locating subcutaneous blood vessels in robot-assisted minimally invasive surgery. , 2015, , .                     |     | 46        |
| 114 | Teleoperated versus open needle driving: Kinematic analysis of experienced surgeons and novice users. , 2015, , .                                         |     | 22        |
| 115 | Navigating the New RAS Publications Landscape [From the Editors' Desks]. IEEE Robotics and Automation Magazine, 2015, 22, 4-163.                          | 2.2 | 1         |
| 116 | Sensory Substitution and Augmentation Using 3-Degree-of-Freedom Skin Deformation Feedback. IEEE<br>Transactions on Haptics, 2015, 8, 209-221.             | 1.8 | 61        |
| 117 | Artificial Tactile Sensing of Position and Slip Speed by Exploiting Geometrical Features. IEEE/ASME<br>Transactions on Mechatronics, 2015, 20, 263-274.   | 3.7 | 18        |
| 118 | Methods to Segment Hard Inclusions in Soft Tissue During Autonomous Robotic Palpation. IEEE<br>Transactions on Robotics, 2015, 31, 344-354.               | 7.3 | 49        |
| 119 | M-Width: Stability, noise characterization, and accuracy of rendering virtual mass. International<br>Journal of Robotics Research, 2015, 34, 781-798.     | 5.8 | 23        |
| 120 | Rendered and Characterized Closed-Loop Accuracy of Impedance-Type Haptic Displays. IEEE<br>Transactions on Haptics, 2015, 8, 434-446.                     | 1.8 | 26        |
| 121 | Design and experimental evaluation of a skin-stretch haptic device for improved control of brain-computer interfaces. , 2015, , .                         |     | 7         |
| 122 | The effect of manipulator gripper stiffness on teleoperated task performance. , 2015, , .                                                                 |     | 1         |
| 123 | Environment Perception in the Presence of Kinesthetic or Tactile Guidance Virtual Fixtures. , 2015, , .                                                   |     | 3         |
| 124 | Tactile Skin Deformation Feedback for Conveying Environment Forces in Teleoperation. , 2015, , .                                                          |     | 4         |
| 125 | Sensory substitution of force and torque using 6-DoF tangential and normal skin deformation feedback. , 2015, , .                                         |     | 20        |
| 126 | Effects of master-slave tool misalignment in a teleoperated surgical robot. , 2015, , .                                                                   |     | 14        |

| #   | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | 3-D Ultrasound-Guided Robotic Needle Steering in Biological Tissue. IEEE Transactions on Biomedical Engineering, 2014, 61, 2899-2910.                                                                             | 2.5 | 83        |
| 128 | Uncontrolled Manifold Analysis of Arm Joint Angle Variability During Robotic Teleoperation and<br>Freehand Movement of Surgeons and Novices. IEEE Transactions on Biomedical Engineering, 2014, 61,<br>2869-2881. | 2.5 | 47        |
| 129 | Torsional Dynamics of Steerable Needles: Modeling and Fluoroscopic Guidance. IEEE Transactions on<br>Biomedical Engineering, 2014, 61, 2707-2717.                                                                 | 2.5 | 28        |
| 130 | Effect of load force feedback on grip force control during teleoperation: A preliminary study. , 2014, ,                                                                                                          |     | 14        |
| 131 | Augmentation Of Stiffness Perception With a 1-Degree-of-Freedom Skin Stretch Device. IEEE<br>Transactions on Human-Machine Systems, 2014, 44, 731-742.                                                            | 2.5 | 65        |
| 132 | Mapping stiffness perception in the brain with an fMRI-compatible particle-jamming haptic interface. , 2014, 2014, 2051-6.                                                                                        |     | 9         |
| 133 | Time-delayed teleoperation for interaction with moving objects in space. , 2014, , .                                                                                                                              |     | 12        |
| 134 | Haptic feedback enhances rhythmic motor control by reducing variability, not improving convergence<br>rate. Journal of Neurophysiology, 2014, 111, 1286-1299.                                                     | 0.9 | 23        |
| 135 | Recursive estimation of needle pose for control of 3D-ultrasound-guided robotic needle steering. , 2014, , .                                                                                                      |     | 8         |
| 136 | Testing models of cerebellar ataxia via dynamic simulation. Robotica, 2014, 32, 1383-1397.                                                                                                                        | 1.3 | 1         |
| 137 | Effects of robotic manipulators on movements of novices and surgeons. Surgical Endoscopy and Other Interventional Techniques, 2014, 28, 2145-2158.                                                                | 1.3 | 54        |
| 138 | Predicting and correcting ataxia using a model of cerebellar function. Brain, 2014, 137, 1931-1944.                                                                                                               | 3.7 | 85        |
| 139 | Grip Force Control during Virtual Object Interaction: Effect of Force Feedback, Accuracy Demands, and Training. IEEE Transactions on Haptics, 2014, 7, 37-47.                                                     | 1.8 | 37        |
| 140 | Closed-loop stiffness and damping accuracy of impedance-type haptic displays. , 2014, , .                                                                                                                         |     | 14        |
| 141 | Design and evaluation of duty-cycling steering algorithms for robotically-driven steerable needles. , 2014, , .                                                                                                   |     | 33        |
| 142 | Position and velocity cursor mappings contribute to distinct muscle forces in simulated isometric and movement reaching. , 2014, , .                                                                              |     | 4         |
| 143 | Perception of a Haptic Jamming display: Just noticeable differences in stiffness and geometry. , 2014, , .                                                                                                        |     | 18        |
| 144 | Sensory substitution using 3-degree-of-freedom tangential and normal skin deformation feedback. , 2014, , .                                                                                                       |     | 27        |

| #   | Article                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Task-dependent impedance and implications for upper-limb prosthesis control. International Journal of Robotics Research, 2014, 33, 827-846.                       | 5.8 | 21        |
| 146 | Neural coding of passive lump detection in compliant artificial tissue. Journal of Neurophysiology, 2014, 112, 1131-1141.                                         | 0.9 | 7         |
| 147 | Real-Time 3D Curved Needle Segmentation Using Combined B-Mode and Power Doppler Ultrasound.<br>Lecture Notes in Computer Science, 2014, 17, 381-388.              | 1.0 | 14        |
| 148 | Robotic Assistance for Cerebellar Reaching. Trends in Augmentation of Human Performance, 2014, ,<br>317-343.                                                      | 0.4 | 1         |
| 149 | Predictive Modeling by the Cerebellum Improves Proprioception. Journal of Neuroscience, 2013, 33, 14301-14306.                                                    | 1.7 | 111       |
| 150 | Tissue fixation by suction increases the accuracy of robotic needle insertion. , 2013, , .                                                                        |     | 2         |
| 151 | Adaptation to visuomotor rotation in isometric reaching is similar to movement adaptation. , 2013, 2013, 6650431.                                                 |     | 7         |
| 152 | A framework for analysis of surgeon arm posture variability in robot-assisted surgery. , 2013, , .                                                                |     | 15        |
| 153 | 3D Segmentation of Curved Needles Using Doppler Ultrasound and Vibration. Lecture Notes in Computer Science, 2013, , 61-70.                                       | 1.0 | 13        |
| 154 | Characterization and Psychophysical Studies of an Air-Jet Lump Display. IEEE Transactions on Haptics, 2013, 6, 156-166.                                           | 1.8 | 24        |
| 155 | A Haptic System for Educational Games: Design and Application-Specific Kinematic Optimization. , 2013, , $\cdot$                                                  |     | 1         |
| 156 | Cerebellar motor learning: are environment dynamics more important than error size?. Journal of Neurophysiology, 2013, 110, 322-333.                              | 0.9 | 65        |
| 157 | Effect of age on stiffness modulation during postural maintenance of the arm. , 2013, 2013, 6650395.                                                              |     | 3         |
| 158 | Sensory substitution via cutaneous skin stretch feedback. , 2013, , .                                                                                             |     | 52        |
| 159 | Perception of Springs With Visual and Proprioceptive Motion Cues: Implications for Prosthetics. IEEE<br>Transactions on Human-Machine Systems, 2013, 43, 102-114. | 2.5 | 23        |
| 160 | Novel algorithm for real-time onset detection of surface electromyography in step-tracking wrist movements. , 2013, 2013, 2056-9.                                 |     | 1         |
| 161 | Coaxial Needle Insertion Assistant With Enhanced Force Feedback. IEEE Transactions on Biomedical Engineering, 2013, 60, 379-389.                                  | 2.5 | 43        |
| 162 | Autonomous robotic palpation: Machine learning techniques to identify hard inclusions in soft tissues. , 2013, , .                                                |     | 30        |

| #   | Article                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Sensory augmentation of stiffness using fingerpad skin stretch. , 2013, , .                                                                                      |     | 20        |
| 164 | The effect of a robot-assisted surgical system on the kinematics of user movements. , 2013, 2013, 6257-60.                                                       |     | 7         |
| 165 | Cerebellar ataxia impairs modulation of arm stiffness during postural maintenance. Journal of Neurophysiology, 2013, 110, 1611-1620.                             | 0.9 | 2         |
| 166 | Does a basic deficit in force control underlie cerebellar ataxia?. Journal of Neurophysiology, 2013, 109, 1107-1116.                                             | 0.9 | 9         |
| 167 | Robot Guided Sheaths (RoGS) for Percutaneous Access to the Pediatric Kidney: Patient-Specific Design and Preliminary Results. , 2013, , .                        |     | 4         |
| 168 | Model-Mediated Teleoperation With Predictive Models and Relative Tracking. , 2013, , .                                                                           |     | 1         |
| 169 | Active force perception depends on cerebellar function. Journal of Neurophysiology, 2012, 107, 1612-1620.                                                        | 0.9 | 44        |
| 170 | Characterization of robotic needle insertion and rotation in artificial and ex vivo tissues. , 2012, , .                                                         |     | 20        |
| 171 | User comprehension of task performance with varying impedance in a virtual prosthetic arm: A pilot study. , 2012, , .                                            |     | 5         |
| 172 | Behavior of Tip-Steerable Needles in Ex Vivo and In Vivo Tissue. IEEE Transactions on Biomedical Engineering, 2012, 59, 2705-2715.                               | 2.5 | 72        |
| 173 | Conveying the configuration of a virtual human hand using vibrotactile feedback. , 2012, , .                                                                     |     | 13        |
| 174 | Haptic footstep display. , 2012, , .                                                                                                                             |     | 8         |
| 175 | HAPI Bands: A haptic augmented posture interface. , 2012, , .                                                                                                    |     | 24        |
| 176 | Wearable haptic device for cutaneous force and slip speed display. , 2012, , .                                                                                   |     | 18        |
| 177 | Augmented reality and haptic interfaces for robotâ€assisted surgery. International Journal of Medical<br>Robotics and Computer Assisted Surgery, 2012, 8, 45-56. | 1.2 | 83        |
| 178 | Design and control of an air-jet lump display. , 2012, , .                                                                                                       |     | 13        |
| 179 | Discrimination of Springs with Vision, Proprioception, and Artificial Skin Stretch Cues. Lecture Notes in Computer Science, 2012, , 160-172.                     | 1.0 | 3         |
| 180 | Characterization of an air jet haptic lump display. , 2011, 2011, 3467-70.                                                                                       |     | 12        |

| #   | Article                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Coaxial needle insertion assistant for epidural puncture. , 2011, , .                                                           |     | 5         |
| 182 | Robot-Assisted Needle Steering. IEEE Robotics and Automation Magazine, 2011, 18, 35-46.                                         | 2.2 | 146       |
| 183 | Haptics in medicine and clinical skill acquisition [special section intro.]. IEEE Transactions on Haptics, 2011, 4, 153-154.    | 1.8 | 20        |
| 184 | Experimental evaluation of a coaxial needle insertion assistant with enhanced force feedback. , 2011, 2011, 3447-50.            |     | 12        |
| 185 | Design and evaluation of a multi-modal haptic skin stimulation apparatus. , 2011, 2011, 3455-8.                                 |     | 6         |
| 186 | Assessing the quality of force feedback in soft tissue simulation. , 2011, 2011, 3451-4.                                        |     | 2         |
| 187 | Task-dependent impedance improves user performance with a virtual prosthetic arm. , 2011, , .                                   |     | 11        |
| 188 | Coaxial needle insertion assistant for epidural puncture. , 2011, , .                                                           |     | 7         |
| 189 | Gradual anisometric-isometric transition for human-machine interfaces. , 2011, 2011, 4507-10.                                   |     | 1         |
| 190 | Force Feedback and Sensory Substitution for Robot-Assisted Surgery. , 2011, , 419-448.                                          |     | 26        |
| 191 | Robotic Needle Steering: Design, Modeling, Planning, and Image Guidance. , 2011, , 557-582.                                     |     | 74        |
| 192 | Medical and Health-Care Robotics. IEEE Robotics and Automation Magazine, 2010, 17, 26-37.                                       | 2.2 | 122       |
| 193 | Estimation of model parameters for steerable needles. , 2010, , 3703-3708.                                                      |     | 18        |
| 194 | Defining performance tradeoffs for multi-degree-of-freedom bilateral teleoperators with LQG control. , 2010, , .                |     | 5         |
| 195 | Evaluation of robotic needle steering in ex vivo tissue. , 2010, 2010, 2068-2073.                                               |     | 37        |
| 196 | Plugfest 2009: Global interoperability in Telerobotics and telemedicine. , 2010, 2010, 1733-1738.                               |     | 26        |
| 197 | Identifying the role of proprioception in upper-limb prosthesis control. ACM Transactions on Applied Perception, 2010, 7, 1-23. | 1.2 | 56        |
| 198 | Human vs. robotic tactile sensing: Detecting lumps in soft tissue. , 2010, , .                                                  |     | 53        |

| #   | Article                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Design of a haptic simulator for osteosynthesis screw insertion. , 2010, , .                                                                            |     | 6         |
| 200 | Modelling of non-linear elastic tissues for surgical simulation. Computer Methods in Biomechanics and Biomedical Engineering, 2010, 13, 811-818.        | 0.9 | 52        |
| 201 | Mechanics of Flexible Needles Robotically Steered through Soft Tissue. International Journal of<br>Robotics Research, 2010, 29, 1640-1660.              | 5.8 | 251       |
| 202 | Observations and models for needle-tissue interactions. , 2009, , .                                                                                     |     | 41        |
| 203 | Environment discrimination with vibration feedback to the foot, arm, and fingertip. , 2009, , .                                                         |     | 13        |
| 204 | Effects of haptic and graphical force feedback on teleoperated palpation. , 2009, , .                                                                   |     | 63        |
| 205 | Controlling a robotically steered needle in the presence of torsional friction. , 2009, , 3476-3481.                                                    |     | 19        |
| 206 | Characterization of pre-curved needles for steering in tissue. , 2009, 2009, 1200-3.                                                                    |     | 38        |
| 207 | Design considerations and human-machine performance of moving virtual fixtures. , 2009, , .                                                             |     | 21        |
| 208 | Tissue property estimation and graphical display for teleoperated robot-assisted surgery. , 2009, , .                                                   |     | 72        |
| 209 | Modeling and Control of Needles With Torsional Friction. IEEE Transactions on Biomedical Engineering, 2009, 56, 2905-2916.                              | 2.5 | 85        |
| 210 | The importance of organ geometry and boundary constraints for planning of medical interventions.<br>Medical Engineering and Physics, 2009, 31, 195-206. | 0.8 | 62        |
| 211 | Quantifying perception of nonlinear elastic tissue models using multidimensional scaling. , 2009, , .                                                   |     | 4         |
| 212 | Observations of needle-tissue interactions. , 2009, 2009, 262-5.                                                                                        |     | 12        |
| 213 | Force & torque feedback vs force only feedback. , 2009, , .                                                                                             |     | 23        |
| 214 | Haptics as an aid to copying for people with Williams Syndrome. , 2009, , .                                                                             |     | 3         |
| 215 | Stiffness discrimination with visual and proprioceptive cues. , 2009, , .                                                                               |     | 32        |
| 216 | Haptic feedback in robot-assisted minimally invasive surgery. Current Opinion in Urology, 2009, 19, 102-107.                                            | 0.9 | 477       |

| #   | Article                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Feedback control for steering needles through 3D deformable tissue using helical paths. , 2009, V, 37.                                                                    |     | 51        |
| 218 | Modeling the Forces of Cutting With Scissors. IEEE Transactions on Biomedical Engineering, 2008, 55, 848-856.                                                             | 2.5 | 50        |
| 219 | Surgical and Interventional Robotics - Core Concepts, Technology, and Design [Tutorial]. IEEE<br>Robotics and Automation Magazine, 2008, 15, 122-130.                     | 2.2 | 115       |
| 220 | Surgical and interventional robotics: Part II. IEEE Robotics and Automation Magazine, 2008, 15, 94-102.                                                                   | 2.2 | 37        |
| 221 | Surgical and interventional robotics: part III [Tutorial]. IEEE Robotics and Automation Magazine, 2008, 15, 84-93.                                                        | 2.2 | 44        |
| 222 | Effects of visual force feedback on robot-assisted surgical task performance. Journal of Thoracic and Cardiovascular Surgery, 2008, 135, 196-202.                         | 0.4 | 185       |
| 223 | Haptics. , 2008, , 719-739.                                                                                                                                               |     | 51        |
| 224 | Techniques for environment parameter estimation during telemanipulation. , 2008, , .                                                                                      |     | 21        |
| 225 | Control methods for guidance virtual fixtures in compliant human-machine interfaces. , 2008, , .                                                                          |     | 9         |
| 226 | Integrated planning and image-guided control for planar needle steering. , 2008, 2008, 819-824.                                                                           |     | 71        |
| 227 | Effects of Proprioceptive Motion Feedback on Sighted and Non-Sighted Control of a Virtual Hand Prosthesis. , 2008, , .                                                    |     | 7         |
| 228 | Force-Feedback Surgical Teleoperator: Controller Design and Palpation Experiments. , 2008, , .                                                                            |     | 57        |
| 229 | Modeling Realistic Tool-Tissue Interactions with Haptic Feedback: A Learning-based Method. , 2008, , .                                                                    |     | 18        |
| 230 | The Touch Thimble: Providing Fingertip Contact Feedback During Point-Force Haptic Interaction. , 2008, , .                                                                |     | 47        |
| 231 | Needle-tissue interaction forces for bevel-tip steerable needles. , 2008, , 224-231.                                                                                      |     | 74        |
| 232 | Telemanipulators with Sensor/Actuator Asymmetries Fail the Robustness Criterion. , 2008, , .                                                                              |     | 5         |
| 233 | Haptic Simulation of Elbow Joint Spasticity. , 2008, , .                                                                                                                  |     | 24        |
| 234 | Modeling of Tool-Tissue Interactions for Computer-Based Surgical Simulation: A Literature Review.<br>Presence: Teleoperators and Virtual Environments, 2008, 17, 463-491. | 0.3 | 168       |

| #   | Article                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | A simulator to explore the role of haptic feedback in cataract surgery training. Studies in Health<br>Technology and Informatics, 2008, 132, 106-11.                         | 0.2 | 9         |
| 236 | Physically valid surgical simulators: linear versus nonlinear tissue models. Studies in Health<br>Technology and Informatics, 2008, 132, 293-5.                              | 0.2 | 3         |
| 237 | Pseudo-admittance Bilateral Telemanipulation with Guidance Virtual Fixtures. International Journal of Robotics Research, 2007, 26, 865-884.                                  | 5.8 | 39        |
| 238 | Haptic Virtual Fixtures for Robot-Assisted Manipulation. , 2007, , 49-64.                                                                                                    |     | 190       |
| 239 | Dynamic Guidance with Pseudoadmittance Virtual Fixtures. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .                                   | 0.0 | 17        |
| 240 | Effects of Visual and Proprioceptive Motion Feedback on Human Control of Targeted Movement. , 2007, , .                                                                      |     | 28        |
| 241 | Virtual Fixture Control for Compliant Human-Machine Interfaces. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .                            | 0.0 | 6         |
| 242 | Enhancing Transparency of a Position-Exchange Teleoperator. , 2007, , .                                                                                                      |     | 19        |
| 243 | Evaluation of Human Performance with Kinematic and Haptic Errors. , 2007, , .                                                                                                |     | 1         |
| 244 | Friction Compensation for Enhancing Transparency of a Teleoperator With Compliant Transmission. , 2007, 23, 1240-1246.                                                       |     | 47        |
| 245 | Effects of Translational and Gripping Force Feedback are Decoupled in a 4-Degree-of-Freedom<br>Telemanipulator. , 2007, , .                                                  |     | 17        |
| 246 | Teleoperation of Steerable Needles. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .                                                        | 0.0 | 29        |
| 247 | Quantifying the Value of Visual and Haptic Position Feedback During Force-Based Motion Control. ,<br>2007, , .                                                               |     | 4         |
| 248 | Force Feedback is Noticeably Different for Linear versus Nonlinear Elastic Tissue Models. , 2007, , .                                                                        |     | 13        |
| 249 | Robotics with a Human Touch-Haptics and Medical Applications Journal of the Robotics Society of<br>Japan, 2006, 24, 588-590.                                                 | 0.0 | 0         |
| 250 | Dynamic Augmented Reality for Sensory Substitution in Robot-Assisted Surgical Systems. , 2006, 2006, 567-70.                                                                 |     | 46        |
| 251 | Stable Forbidden-Region Virtual Fixtures for Bilateral Telemanipulation. Journal of Dynamic Systems,<br>Measurement and Control, Transactions of the ASME, 2006, 128, 53-64. | 0.9 | 52        |
|     |                                                                                                                                                                              |     |           |

252 Toward Active Cannulas: Miniature Snake-Like Surgical Robots. , 2006, , .

| #   | Article                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Friction Compensation for a Force-Feedback Teleoperator with Compliant Transmission. , 2006, , .                                                                                             |     | 6         |
| 254 | Dynamic Augmented Reality for Sensory Substitution in Robot-Assisted Surgical Systems. Annual<br>International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , . | 0.5 | 2         |
| 255 | Effect of sensory substitution on suture-manipulation forces for robotic surgical systems. Journal of Thoracic and Cardiovascular Surgery, 2005, 129, 151-158.                               | 0.4 | 234       |
| 256 | A novel two-dimensional tactile slip display: design, kinematics and perceptual experiments. ACM<br>Transactions on Applied Perception, 2005, 2, 150-165.                                    | 1.2 | 70        |
| 257 | A Velocity-Dependent Model for Needle Insertion in Soft Tissue. Lecture Notes in Computer Science, 2005, 8, 624-632.                                                                         | 1.0 | 52        |
| 258 | Vision-Based Assistance for Ophthalmic Micro-Surgery. Lecture Notes in Computer Science, 2004, ,<br>49-57.                                                                                   | 1.0 | 19        |
| 259 | Speed-Accuracy Characteristics of Human-Machine Cooperative Manipulation Using Virtual Fixtures<br>With Variable Admittance. Human Factors, 2004, 46, 518-532.                               | 2.1 | 52        |
| 260 | The effect of visual and haptic feedback on computer-assisted needle insertion. Computer Aided Surgery, 2004, 9, 243-249.                                                                    | 1.8 | 69        |
| 261 | Force Modeling for Needle Insertion Into Soft Tissue. IEEE Transactions on Biomedical Engineering, 2004, 51, 1707-1716.                                                                      | 2.5 | 680       |
| 262 | Application of Haptic Feedback to Robotic Surgery. Journal of Laparoendoscopic and Advanced<br>Surgical Techniques - Part A, 2004, 14, 191-195.                                              | 0.5 | 204       |
| 263 | A Sufficient Condition for Passive Virtual Walls With Quantization Effects. , 2004, , 1065.                                                                                                  |     | 10        |
| 264 | Virtual Remote Center of Motion control for needle placement robots‡. Computer Aided Surgery,<br>2004, 9, 175-183.                                                                           | 1.8 | 24        |
| 265 | The effect of visual and haptic feedback on computer-assisted needle insertion*. Computer Aided Surgery, 2004, 9, 243-249.                                                                   | 1.8 | 44        |
| 266 | Feeling is Believing: Using a Forceâ€Feedback Joystick to Teach Dynamic Systems. Journal of Engineering<br>Education, 2002, 91, 345-349.                                                     | 1.9 | 108       |
| 267 | Measurement of the Tip and Friction Force Acting on a Needle during Penetration. Lecture Notes in Computer Science, 2002, , 216-223.                                                         | 1.0 | 57        |
| 268 | The Effect of Visual and Haptic Feedback on Manual and Teleoperated Needle Insertion. Lecture Notes in Computer Science, 2002, , 147-154.                                                    | 1.0 | 38        |
| 269 | Measurement, Analysis, and Display of Haptic Signals During Surgical Cutting. Presence: Teleoperators<br>and Virtual Environments, 2002, 11, 626-651.                                        | 0.3 | 66        |
| 270 | Analysis of Suture Manipulation Forces for Teleoperation with Force Feedback. Lecture Notes in Computer Science, 2002, , 155-162.                                                            | 1.0 | 63        |

| #   | Article                                                                                                                        | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Reality-based models for vibration feedback in virtual environments. IEEE/ASME Transactions on Mechatronics, 2001, 6, 245-252. | 3.7 | 186       |
| 272 | Comprehensive access to printed materials (CAPM). , 2001, , .                                                                  |     | 3         |
| 273 | M-Width: Stability and Accuracy of Haptic Rendering of Virtual Mass. , 0, , .                                                  |     | 7         |