Erasmo Carrera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5703578/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Numerical simulation of deployable ultra-thin composite shell structures for space applications and comparison with experiments. Mechanics of Advanced Materials and Structures, 2023, 30, 1591-1603.	2.6	23
2	An extension of the Hamilton variational principle for piezoelectric bodies with dipolar structure. Mechanics of Advanced Materials and Structures, 2023, 30, 2453-2457.	2.6	16
3	Synthesis, experimental testing and multi-scale modelling of graphene foam/epoxy composite. Mechanics of Advanced Materials and Structures, 2023, 30, 2477-2486.	2.6	15
4	Unified one-dimensional finite element for the analysis of hyperelastic soft materials and structures. Mechanics of Advanced Materials and Structures, 2023, 30, 342-355.	2.6	17
5	A geometrically nonlinear analysis through hierarchical one-dimensional modelling of sandwich beam structures. Acta Mechanica, 2023, 234, 67-83.	2.1	9
6	Geometrically nonlinear analysis and vibration of in-plane-loaded variable angle tow composite plates and shells. Acta Mechanica, 2023, 234, 85-108.	2.1	26
7	The effects of surroundings and stiffeners in the CUF-based postbuckling analysis of composite panels under in-plane shear. Mechanics of Advanced Materials and Structures, 2023, 30, 3267-3279.	2.6	31
8	High-order finite beam elements for propagation analyses of arbitrary-shaped one-dimensional waveguides. Mechanics of Advanced Materials and Structures, 2022, 29, 1883-1891.	2.6	8
9	Carrera unified formulation (CUF) for the micropolar plates and shells. I. Higher order theory. Mechanics of Advanced Materials and Structures, 2022, 29, 773-795.	2.6	54
10	Carrera unified formulation (CUF) for the micropolar plates and shells. II. Complete linear expansion case. Mechanics of Advanced Materials and Structures, 2022, 29, 796-815.	2.6	34
11	Experimental and numerical vibration correlation of pre-stressed laminated reinforced panel. Mechanics of Advanced Materials and Structures, 2022, 29, 2165-2175.	2.6	10
12	Carrera unified formulation for the micropolar plates. Mechanics of Advanced Materials and Structures, 2022, 29, 3163-3186.	2.6	29
13	Free vibration analysis of curved metallic and composite beam structures using a novel variable-kinematic DQ method. Mechanics of Advanced Materials and Structures, 2022, 29, 3743-3762.	2.6	17
14	Component-wise approach to reinforced concrete structures. Mechanics of Advanced Materials and Structures, 2022, 29, 3871-3888.	2.6	12
15	A reciprocal relation with application in the study of the dislocations. Mechanics of Advanced Materials and Structures, 2022, 29, 6330-6335.	2.6	4
16	Static analysis of thin-walled beams accounting for nonlinearities. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236, 2967-2980.	2.1	3
17	Elastoplastic Micromechanical Analysis of Fiber-Reinforced Composites with Defects. Aerotecnica Missili & Spazio, 2022, 101, 53-59.	0.9	7
18	Numerical vibration correlation technique for thin-walled composite beams under compression based on accurate refined finite element. Composite Structures, 2022, 280, 114861.	5.8	15

#	Article	IF	CITATIONS
19	Quasiâ€static fracture analysis by coupled threeâ€dimensional peridynamics and high order oneâ€dimensional finite elements based on local elasticity. International Journal for Numerical Methods in Engineering, 2022, 123, 1098-1113.	2.8	23
20	Vibration and Buckling of Composite Shells Subjected to Combined Internal Pressure and Axial Compression. , 2022, , .		2
21	Nonlinear and linearized vibration analysis of plates and shells subjected to compressive loading. International Journal of Non-Linear Mechanics, 2022, 141, 103936.	2.6	23
22	Refined structural theories for the random response of fiber-reinforced and sandwich composite structures. , 2022, , .		1
23	Large deflection of composite beams by finite elements with node-dependent kinematics. Computational Mechanics, 2022, 69, 1481-1500.	4.0	11
24	Evaluation of stiffeners effects on buckling and post-buckling of laminated panels. Aerospace Science and Technology, 2022, 123, 107431.	4.8	9
25	Exact component-wise solutions for 3D free vibration and stress analysis of hybrid steel–concrete composite beams. Thin-Walled Structures, 2022, 174, 109094.	5.3	10
26	Optimum distribution of materials for functionally graded rectangular plates considering thermal buckling. Composite Structures, 2022, 289, 115401.	5.8	14
27	Carrera unified formulation (CUF) for the micropolar plates and shells. III. Classical models. Mechanics of Advanced Materials and Structures, 2022, 29, 6336-6360.	2.6	18
28	Carrera unified formulation (CUF) for the analysis of disbonds in single lap joints (SLJ). , 2022, , .		0
29	Thermal buckling loads of rectangular FG plates with temperature-dependent properties using Carrera Unified Formulation. Composite Structures, 2022, 295, 115787.	5.8	12
30	Hierarchical beam finite elements for geometrically nonlinear analysis coupled with Asymptotic Numerical Method. Mechanics of Advanced Materials and Structures, 2021, 28, 2487-2500.	2.6	14
31	Stress analyses of viscoelastic three-dimensional beam-like structures with low- and high-order one-dimensional finite elements. Meccanica, 2021, 56, 1475-1482.	2.0	7
32	Carrera unified formulation (CUF) for the micropolar beams: Analytical solutions. Mechanics of Advanced Materials and Structures, 2021, 28, 583-607.	2.6	54
33	Mechanical and thermal buckling loads of rectangular FG plates by using higher-order unified formulation. Mechanics of Advanced Materials and Structures, 2021, 28, 608-617.	2.6	31
34	Homogenization and free-vibration analysis of elastic metamaterial plates by Carrera Unified Formulation finite elements. Mechanics of Advanced Materials and Structures, 2021, 28, 476-485.	2.6	25
35	A critical assessment of design tools for stress analysis of adhesively bonded double lap joints. Mechanics of Advanced Materials and Structures, 2021, 28, 791-811.	2.6	6
36	Nonlinear analysis of thin-walled beams with highly deformable sections. International Journal of Non-Linear Mechanics, 2021, 128, 103613.	2.6	18

#	Article	IF	CITATIONS
37	Selection of element-wise shell kinematics using neural networks. Computers and Structures, 2021, 244, 106425.	4.4	11
38	On the role of large cross-sectional deformations in the nonlinear analysis of composite thin-walled structures. Archive of Applied Mechanics, 2021, 91, 1605-1621.	2.2	9
39	Large deflection and post-buckling of thin-walled structures by finite elements with node-dependent kinematics. Acta Mechanica, 2021, 232, 591-617.	2.1	12
40	Static and dynamic hygrothermal postbuckling analysis of sandwich cylindrical panels with an FG-CNTRC core surrounded by nonlinear viscoelastic foundations. Composite Structures, 2021, 259, 113214.	5.8	21
41	Vibro-acoustic analysis of composite plate-cavity systems via CUF finite elements. Composite Structures, 2021, 259, 113428.	5.8	17
42	Nonlinear hygrothermal vibration and buckling analysis of imperfect FG-CNTRC cylindrical panels embedded in viscoelastic foundations. European Journal of Mechanics, A/Solids, 2021, 85, 104107.	3.7	39
43	A novel computational framework for the analysis of bistable composite beam structures. Composite Structures, 2021, 257, 113167.	5.8	5
44	Closed-form solution for the micropolar plates: Carrera unified formulation (CUF) approach. Archive of Applied Mechanics, 2021, 91, 91-116.	2.2	20
45	Global-local plug-in for high-fidelity composite stress analysis in Femap/NX Nastran. Mechanics of Advanced Materials and Structures, 2021, 28, 1121-1127.	2.6	9
46	Global-local plug-in for high-fidelity composite stress analysis in ABAQUS. Mechanics of Advanced Materials and Structures, 2021, 28, 1445-1450.	2.6	13
47	Optimized free-form surface modeling of point clouds from laser-based measurement. Mechanics of Advanced Materials and Structures, 2021, 28, 1570-1578.	2.6	56
48	Flutter analysis of rotary laminated composite structures using higher-order kinematics. Composites Part C: Open Access, 2021, 4, 100100.	3.2	2
49	Validation of FEM models based on Carrera Unified Formulation for the parametric characterization of composite metamaterials. Journal of Sound and Vibration, 2021, 498, 115979.	3.9	11
50	Stress States in Highly Flexible Thin-Walled Composite Structures by Unified Shell Model. AIAA Journal, 2021, 59, 4243-4256.	2.6	18
51	Stability and transient analyses of asymmetric rotors on anisotropic supports. Journal of Sound and Vibration, 2021, 500, 116006.	3.9	8
52	Who needs refined structural theories?. Composite Structures, 2021, 264, 113671.	5.8	27
53	Static and dynamic testing of a full-composite VLA by using digital image correlation and output-only ground vibration testing. Aerospace Science and Technology, 2021, 112, 106632.	4.8	5
54	Compressive damage modeling of fiber-reinforced composite laminates using 2D higher-order layer-wise models. Composites Part B: Engineering, 2021, 215, 108753.	12.0	26

#	Article	IF	CITATIONS
55	Dynamic analyses of viscoelastic three-dimensional structures with advanced one-dimensional finite elements. European Journal of Mechanics, A/Solids, 2021, 88, 104241.	3.7	5
56	Mechanical characterization of 3D printed mimic of human artery affected by atherosclerotic plaque through numerical and experimental methods. Biomechanics and Modeling in Mechanobiology, 2021, 20, 1969-1980.	2.8	7
57	Buckling and post-buckling of anisotropic flat panels subjected to axial and shear in-plane loadings accounting for classical and refined structural and nonlinear theories. International Journal of Non-Linear Mechanics, 2021, 133, 103716.	2.6	22
58	Multi-layered plate finite element models with node-dependent kinematics for smart structures with piezoelectric components. Chinese Journal of Aeronautics, 2021, 34, 164-175.	5.3	7
59	Component-wise damage detection by neural networks and refined FEs training. Journal of Sound and Vibration, 2021, 509, 116255.	3.9	11
60	Benchmarks for higher-order modes evaluation in the free vibration response of open thin-walled beams due to the cross-sectional deformations. Thin-Walled Structures, 2021, 166, 107965.	5.3	23
61	Post-buckling and large-deflection analysis of a sandwich FG plate with FG porous core using Carrera's Unified Formulation. Composite Structures, 2021, 272, 114189.	5.8	29
62	Efficient CUF-based method for the vibrations of thin-walled open cross-section beams under compression. Journal of Sound and Vibration, 2021, 510, 116232.	3.9	14
63	A finite element approach for the static and vibration analyses of functionally graded material viscoelastic sandwich beams with nonlinear material behavior. Composite Structures, 2021, 274, 114315.	5.8	18
64	Free vibration analysis of variable stiffness composite laminated beams and plates by novel hierarchical differential quadrature finite elements. Composite Structures, 2021, 274, 114364.	5.8	57
65	Effect of different geometrically nonlinear strain measures on the static nonlinear response of isotropic and composite shells with constant curvature. International Journal of Mechanical Sciences, 2021, 209, 106713.	6.7	19
66	Thermo-mechanical design optimization of symmetric and non-symmetric sandwich plates with ceramic-metal-ceramic functionally graded core to minimize stress, deformation and mass. Composite Structures, 2021, 276, 114496.	5.8	15
67	Use of Lagrange polynomials to build refined theories for laminated beams, plates and shells. Composite Structures, 2021, 276, 114505.	5.8	12
68	Evaluation of bending and post-buckling behavior of thin-walled FG beams in geometrical nonlinear regime with CUF. Composite Structures, 2021, 275, 114408.	5.8	12
69	A global–local approach for progressive damage analysis of fiber-reinforced composite laminates. Thin-Walled Structures, 2021, 169, 108343.	5.3	9
70	Accurate Stress Analysis of Variable Angle Tow Shells by High-Order Equivalent-Single-Layer and Layer-Wise Finite Element Models. Materials, 2021, 14, 6486.	2.9	23
71	Evaluation of Stress Distribution of Isotropic, Composite, and FG Beams with Different Geometries in Nonlinear Regime via Carrera-Unified Formulation and Lagrange Polynomial Expansions. Applied Sciences (Switzerland), 2021, 11, 10627.	2.5	9
72	Evaluation of geometrically nonlinear effects due to large cross-sectional deformations of compact and shell-like structures. Mechanics of Advanced Materials and Structures, 2020, 27, 1269-1277.	2.6	14

#	Article	IF	CITATIONS
73	Strong and weak form solutions of curved beams via Carrera's unified formulation. Mechanics of Advanced Materials and Structures, 2020, 27, 1342-1353.	2.6	13
74	Some estimates on solutions of mixed problems for mixtures. Mechanics of Advanced Materials and Structures, 2020, 27, 1776-1782.	2.6	3
75	On the boundary value problem in the nonlinear theory of dipolar elastic materials. Mechanics of Advanced Materials and Structures, 2020, 27, 1619-1625.	2.6	1
76	J.N. Reddy is selected to receive the 2019 Stephen P. Timoshenko Medal. Mechanics of Advanced Materials and Structures, 2020, 27, 1-2.	2.6	18
77	On the effects of trigonometric and exponential terms on the best theory diagrams for metallic, multilayered, and functionally graded plates. Mechanics of Advanced Materials and Structures, 2020, 27, 426-440.	2.6	8
78	Hygro-thermo-mechanical modelling and analysis of multilayered plates with embedded functionally graded material layers. Composite Structures, 2020, 233, 111442.	5.8	28
79	Modeling and analysis of spiral actuators by exact geometry piezoelectric solid-shell elements. Journal of Intelligent Material Systems and Structures, 2020, 31, 53-70.	2.5	3
80	Isogeometric analysis of 3D straight beam-type structures by Carrera Unified Formulation. Applied Mathematical Modelling, 2020, 79, 768-792.	4.2	17
81	Contact analysis of laminated structures including transverse shear and stretching. European Journal of Mechanics, A/Solids, 2020, 80, 103899.	3.7	5
82	Nonlinear analysis of composite tape springs by refined beam models. , 2020, , .		2
83	Computationally-Efficient Structural Models for Analysis of Woven Composites. , 2020, , .		2
84	Methods and guidelines for the choice of shell theories. Acta Mechanica, 2020, 231, 395-434.	2.1	25
85	Coupled thermo-mechanical finite element models with node-dependent kinematics for multi-layered shell structures. International Journal of Mechanical Sciences, 2020, 171, 105379.	6.7	9
86	Effect of large displacements on the linearized vibration of composite beams. International Journal of Non-Linear Mechanics, 2020, 120, 103390.	2.6	27
87	Nonlinear analysis of compact and thin-walled metallic structures including localized plasticity under contact conditions. Engineering Structures, 2020, 203, 109819.	5.3	5
88	Progressive delamination of laminated composites via 1D models. Composite Structures, 2020, 235, 111799.	5.8	22
89	Layerwise mixed elements with node-dependent kinematics for global–local stress analysis of multilayered plates using high-order Legendre expansions. Computer Methods in Applied Mechanics and Engineering, 2020, 359, 112764.	6.6	17
90	Vibration of metallic and composite shells in geometrical nonlinear equilibrium states. Thin-Walled Structures, 2020, 157, 107131.	5.3	27

#	Article	IF	CITATIONS
91	Progressive damage analysis of composite laminates subjected to low-velocity impact using 2D layer-wise structural models. International Journal of Non-Linear Mechanics, 2020, 127, 103591.	2.6	18
92	Advanced modeling of embedded piezo-electric transducers for the health-monitoring of layered structures. International Journal of Smart and Nano Materials, 2020, 11, 325-342.	4.2	11
93	Flutter analysis of laminated composite structures using Carrera Unified Formulation. Composite Structures, 2020, 253, 112759.	5.8	13
94	Coupling threeâ€dimensional peridynamics and highâ€order oneâ€dimensional finite elements based on local elasticity for the linear static analysis of solid beams and thinâ€walled reinforced structures. International Journal for Numerical Methods in Engineering, 2020, 121, 5066-5081.	2.8	25
95	Assessment of MITC plate elements based on CUF with respect to distorted meshes. Composite Structures, 2020, 238, 111962.	5.8	6
96	Numerical analysis of disbonding in sandwich structures using 1D finite elements. Composite Structures, 2020, 252, 112717.	5.8	5
97	Evaluation of the influence of voids on 3D representative volume elements of fiber-reinforced polymer composites using CUF micromechanics. Composite Structures, 2020, 254, 112833.	5.8	26
98	Evaluation of exact electro-elastic static and free vibration solutions of multilayered plates for benchmarking: Piezoelectric composite laminates and soft core sandwich plates. Composites Part C: Open Access, 2020, 2, 100038.	3.2	3
99	Best Spatial Distributions of Shell Kinematics Over 2D Meshes for Free Vibration Analyses. Aerotecnica Missili & Spazio, 2020, 99, 217-232.	0.9	5
100	Surface elastic waves whispering gallery modes based subwavelength tunable waveguide and cavity modes of the phononic crystals. Mechanics of Advanced Materials and Structures, 2020, 27, 1053-1064.	2.6	25
101	Shell finite element models with local kinematic refinements based on Reissner's Mixed Variational Theorem with layer-wise descriptions. Composite Structures, 2020, 250, 112587.	5.8	4
102	Evaluation of geometrically nonlinear terms in the large-deflection and post-buckling analysis of isotropic rectangular plates. International Journal of Non-Linear Mechanics, 2020, 121, 103461.	2.6	31
103	Popular benchmarks of nonlinear shell analysis solved by 1D and 2D CUF-based finite elements. Mechanics of Advanced Materials and Structures, 2020, 27, 1098-1109.	2.6	29
104	Efficient numerical evaluation of transmission loss in homogenized acoustic metamaterials for aeronautical application. Applied Acoustics, 2020, 164, 107253.	3.3	24
105	Analysis of process-induced deformations and residual stresses in curved composite parts considering transverse shear stress and thickness stretching. Composite Structures, 2020, 241, 112057.	5.8	18
106	Progressive damage analysis of composite structures using higher-order layer-wise elements. Composites Part B: Engineering, 2020, 190, 107921.	12.0	39
107	A variable kinematic one-dimensional model for the hygro-mechanical analysis of composite materials. Composite Structures, 2020, 242, 112089.	5.8	5
108	Evaluation of stress distributions in the geometrical nonlinear regime of functionally graded structures. Composite Structures, 2020, 246, 112385.	5.8	5

#	Article	IF	CITATIONS
109	Assessment of classical, advanced, and layer-wise theories for the vibration of rotating composite anisotropic blades. Composite Structures, 2020, 245, 112315.	5.8	13
110	Design optimization of functionally graded plates under thermo-mechanical loadings to minimize stress, deformation and mass. Composite Structures, 2020, 245, 112360.	5.8	29
111	Free Vibration and Stress Analysis of Laminated Box Beam with and Without Cut-Off. Lecture Notes in Mechanical Engineering, 2020, , 185-196.	0.4	2
112	On the use of neural networks to evaluate performances of shell models for composites. Advanced Modeling and Simulation in Engineering Sciences, 2020, 7, .	1.7	4
113	Accurate through-the-thickness stress distributions in thin-walled metallic structures subjected to large displacements and large rotations. Vietnam Journal of Mechanics, 2020, 42, 239-254.	0.5	5
114	EFFECT OF FIBER ORIENTATION PATH ON THE BUCKLING, FREE VIBRATION, AND STATIC ANALYSES OF VARIABLE ANGLE TOW PANELS. Facta Universitatis, Series: Mechanical Engineering, 2020, 18, 165.	4.6	13
115	Effective Static and Dynamic Finite Element Modeling of a Double Swept Composite Rotor Blade. Journal of the American Helicopter Society, 2020, 65, 1-12.	0.8	8
116	Classical and Advanced Modeling of Rotating Composite Blades and Rotors. , 2020, , 282-294.		0
117	Node-Dependent Kinematics, Multilayered Beam, Plate, and Shell Elements. , 2020, , 1812-1824.		0
118	Variable-Kinematics, Meshless Analysis of Composite Beams. , 2020, , 2587-2600.		0
119	Axiomatic/Asymptotic Method and Best Theory Diagram for Composite Plates and Shells. , 2020, , 143-155.		0
120	Time Response Stress Analysis of Solid and Reinforced Thin-Walled Structures by Component-Wise Models. International Journal of Structural Stability and Dynamics, 2020, 20, 2043010.	2.4	7
121	Nonlinear vibration of imperfect FG-CNTRC cylindrical panels under external pressure in the thermal environment. Composite Structures, 2019, 227, 111310.	5.8	27
122	The MAMS J.N. Reddy Medal at the 1st and 2nd ICMAMS. Mechanics of Advanced Materials and Structures, 2019, 26, 1995-1996.	2.6	0
123	Evaluation of Various Geometrical Nonlinearities in the Response of Beams and Shells. AIAA Journal, 2019, 57, 3524-3533.	2.6	18
124	Computationally Efficient Concurrent Multiscale Framework for the Linear Analysis of Composite Structures. AIAA Journal, 2019, 57, 4019-4028.	2.6	8
125	Comparison of classical and refined beam models applied on isotropic and FG thin-walled beams in nonlinear buckling response. Composite Structures, 2019, 229, 111490.	5.8	11
126	Evaluation of shear and membrane locking in refined hierarchical shell finite elements for laminated structures. Advanced Modeling and Simulation in Engineering Sciences, 2019, 6, .	1.7	8

#	Article	IF	CITATIONS
127	Best theory diagrams for multilayered structures via shell finite elements. Advanced Modeling and Simulation in Engineering Sciences, 2019, 6, .	1.7	5
128	Unified theory of structures based on micropolar elasticity. Meccanica, 2019, 54, 1785-1800.	2.0	11
129	Hygro-thermo-mechanical modelling of multilayered plates: Hybrid composite laminates, fibre metal laminates and sandwich plates. Composites Part B: Engineering, 2019, 177, 107388.	12.0	28
130	Computationally Efficient Concurrent Multiscale Framework for the Nonlinear Analysis of Composite Structures. AIAA Journal, 2019, 57, 4029-4041.	2.6	19
131	Three-dimensional vibrations of multilayered hollow spheres submerged in a complex fluid. Journal of Fluid Mechanics, 2019, 879, 682-715.	3.4	9
132	Electrostatically tunable small-amplitude free vibrations of pressurized electro-active spherical balloons. International Journal of Non-Linear Mechanics, 2019, 117, 103237.	2.6	22
133	Large-deflection and post-buckling analyses of isotropic rectangular plates by Carrera Unified Formulation. International Journal of Non-Linear Mechanics, 2019, 116, 18-31.	2.6	50
134	Multiscale CUF-FE2 nonlinear analysis of composite beam structures. Computers and Structures, 2019, 221, 28-43.	4.4	25
135	Higher-order structural theories for transient analysis of multi-mode Lamb waves with applications to damage detection. Journal of Sound and Vibration, 2019, 457, 139-155.	3.9	15
136	Free vibration analysis of variable angle-tow composite wing structures. Aerospace Science and Technology, 2019, 92, 114-125.	4.8	30
137	Analysis of variable angle tow composites structures using variable kinematic models. Composites Part B: Engineering, 2019, 171, 272-283.	12.0	36
138	Multidimensional Models for Double-Swept Helicopter Blades. AIAA Journal, 2019, 57, 2609-2616.	2.6	7
139	A global/local approach based on CUF for the accurate and efficient analysis of metallic and composite structures. Engineering Structures, 2019, 188, 188-201.	5.3	17
140	Three-dimensional exact hygro-thermo-elastic solutions for multilayered plates: Composite laminates, fibre metal laminates and sandwich plates. Composite Structures, 2019, 216, 260-278.	5.8	35
141	A Node-Dependent Kinematic Approach for Rotordynamics Problems. Journal of Engineering for Gas Turbines and Power, 2019, 141, .	1.1	4
142	Free-edge stress fields in generic laminated composites via higher-order kinematics. Composites Part B: Engineering, 2019, 168, 375-386.	12.0	21
143	Variable Kinematic Shell Formulations Accounting for Multi-field Effects for the Analysis of Multi-layered Structures. PoliTO Springer Series, 2019, , 13-27.	0.5	0
144	On the Effectiveness of Higher-Order One-Dimensional Models for Physically Nonlinear Problems. PoliTO Springer Series, 2019, , 67-81.	0.5	2

#	Article	IF	CITATIONS
145	High-Fidelity Vibration Analysis of Tapered Swept Tailored Composite Wing Boxes. Journal of Aircraft, 2019, 56, 842-846.	2.4	0
146	Multiscale Nonlinear Analysis of Beam Structures by Means of the Carrera Unified Formulation. PoliTO Springer Series, 2019, , 47-63.	0.5	2
147	Accurate stress fields of post-buckled laminated composite beams accounting for various kinematics. International Journal of Non-Linear Mechanics, 2019, 111, 60-71.	2.6	30
148	On the mitigation of shear locking in laminated plates through p-version refinement. Computers and Structures, 2019, 225, 106121.	4.4	5
149	An adaptable refinement approach for shell finite element models based on node-dependent kinematics. Composite Structures, 2019, 210, 1-19.	5.8	38
150	Finite beam elements based on Legendre polynomial expansions and node-dependent kinematics for the global-local analysis of composite structures. European Journal of Mechanics, A/Solids, 2019, 74, 112-123.	3.7	12
151	A variable ESL/LW kinematic plate formulation for free-vibration thermoelastic analysis of laminated structures. Journal of Thermal Stresses, 2019, 42, 452-474.	2.0	26
152	Simulation of Lamb waves via refined FE models with SHM applications. , 2019, , .		0
153	Global/local analysis of free-edge stresses in composite laminates. , 2019, , .		0
154	Best Theory Diagrams for Shell Finite Elements. , 2019, , .		1
155	MITC9 Shell elements based on RMVT and CUF for the analysis of laminated composite plates and shells. Composite Structures, 2019, 209, 383-390.	5.8	10
156	A static analysis of three-dimensional sandwich beam structures by hierarchical finite elements modelling. Journal of Sandwich Structures and Materials, 2019, 21, 2382-2410.	3.5	6
157	Dynamic response of laminated and sandwich composite structures via 1D models based on Chebyshev polynomials. Journal of Sandwich Structures and Materials, 2019, 21, 1428-1444.	3.5	10
158	Elastoplastic analysis of compact and thin-walled structures using classical and refined beam finite element models. Mechanics of Advanced Materials and Structures, 2019, 26, 274-286.	2.6	30
159	Best Structural Theories for Free Vibrations of Sandwich Composites via Machine Learning. , 2019, , .		2
160	Three-Dimensional Solutions for Rotor Blades Using High-Order Geometrical Nonlinear Beam Finite Elements. Journal of the American Helicopter Society, 2019, 64, 1-10.	0.8	7
161	Three-dimensional stress analysis for beam-like structures using Serendipity Lagrange shape functions. International Journal of Solids and Structures, 2018, 141-142, 279-296.	2.7	29
162	Exact solutions for the macro-, meso- and micro-scale analysis of composite laminates and sandwich structures. Journal of Composite Materials, 2018, 52, 3109-3124.	2.4	14

#	Article	IF	CITATIONS
163	Finite element models with node-dependent kinematics for the analysis of composite beam structures. Composites Part B: Engineering, 2018, 132, 35-48.	12.0	29
164	Free vibration analysis of locally damaged aerospace tapered composite structures using component-wise models. Composite Structures, 2018, 192, 38-51.	5.8	18
165	Locking-free curved elements with refined kinematics for the analysis of composite structures. Computer Methods in Applied Mechanics and Engineering, 2018, 337, 481-500.	6.6	15
166	Use of higher-order Legendre polynomials for multilayered plate elements with node-dependent kinematics. Composite Structures, 2018, 202, 222-232.	5.8	23
167	Electro-mechanical analysis of composite and sandwich multilayered structures by shell elements with node-dependent kinematics. International Journal of Smart and Nano Materials, 2018, 9, 1-33.	4.2	36
168	Component-wise analysis of laminated structures by hierarchical refined models with mapping features and enhanced accuracy at layer to fiber-matrix scales. Mechanics of Advanced Materials and Structures, 2018, 25, 1224-1238.	2.6	6
169	3D dynamic coupled thermoelastic solution for constant thickness disks using refined 1D finite element models. Applied Mathematical Modelling, 2018, 60, 273-285.	4.2	12
170	A Method of Panel Flutter Suppression and Elimination for Aeroelastic Structures in Supersonic Airflow. Journal of Vibration and Acoustics, Transactions of the ASME, 2018, 140, .	1.6	10
171	Analysis of laminated composites and sandwich structures by variable-kinematic MITC9 plate elements. Journal of Sandwich Structures and Materials, 2018, 20, 4-41.	3.5	44
172	Unified formulation of geometrically nonlinear refined beam theories. Mechanics of Advanced Materials and Structures, 2018, 25, 15-31.	2.6	128
173	Free-vibration analysis of space vehicle structures made by composite materials. Composite Structures, 2018, 183, 53-62.	5.8	4
174	Refined finite element solutions for anisotropic laminated plates. Composite Structures, 2018, 183, 63-76.	5.8	38
175	Numerical method for nonlinear complex eigenvalues problems depending on two parameters: Application to three-layered viscoelastic composite structures. Mechanics of Advanced Materials and Structures, 2018, 25, 1361-1373.	2.6	9
176	Analysis of tapered composite structures using a refined beam theory. Composite Structures, 2018, 183, 42-52.	5.8	17
177	A robust, four-node, quadrilateral element for stress analysis of functionally graded plates through higher-order theories. Mechanics of Advanced Materials and Structures, 2018, 25, 1383-1402.	2.6	17
178	Modal analysis of delaminated plates and shells using Carrera Unified Formulation – MITC9 shell element. Mechanics of Advanced Materials and Structures, 2018, 25, 681-697.	2.6	48
179	Analysis of beams with piezo-patches by node-dependent kinematic finite element method models. Journal of Intelligent Material Systems and Structures, 2018, 29, 1379-1393.	2.5	15
180	Static and free-vibration analyses of dental prosthesis and atherosclerotic human artery by refined finite element models. Biomechanics and Modeling in Mechanobiology, 2018, 17, 301-317.	2.8	7

#	Article	IF	CITATIONS
181	Multilayered plate elements with node-dependent kinematics for electro-mechanical problems. International Journal of Smart and Nano Materials, 2018, 9, 279-317.	4.2	32
182	Refined One-Dimensional Models for the Multi-Field Analysis of Layered Smart Structures. Advanced Structured Materials, 2018, , 343-366.	0.5	7
183	Micromechanical Progressive Failure Analysis of Fiber-Reinforced Composite Using Refined Beam Models. Journal of Applied Mechanics, Transactions ASME, 2018, 85, .	2.2	37
184	Hybrid-Mixed Solid-Shell Element for Stress Analysis of Laminated Piezoelectric Shells through Higher-Order Theories. Advanced Structured Materials, 2018, , 45-68.	0.5	8
185	A new method of smart and optimal flutter control for composite laminated panels in supersonic airflow under thermal effects. Journal of Sound and Vibration, 2018, 414, 218-232.	3.9	46
186	Multidimensional Model for the Stress Analysis of Reinforced Shell Structures. AIAA Journal, 2018, 56, 1647-1661.	2.6	17
187	Thermo-piezo-elastic analysis of amplified piezoceramic actuators using a refined one-dimensional model. Journal of Intelligent Material Systems and Structures, 2018, 29, 3482-3494.	2.5	8
188	Classical and Advanced Modeling of Rotating Composite Blades and Rotors. , 2018, , 1-13.		0
189	Higher-Order Shell Element for the Static and Free-Vibration Analysis of Sandwich Structures. , 2018, ,		3
190	A Global-Local Strategy for the Elastoplastic Analysis of Complex Metallic Structures via Component-Wise Approach. , 2018, , .		0
191	Finite elements with node dependent kinematics and scalable accuracy for the analysis of Stokes flows. Aerotecnica Missili & Spazio, 2018, 97, 208-218.	0.9	2
192	Mixed One-/Two-Dimensional Models With Node Dependent Kinematic Capabilities for the Analysis of Metallic and Composite Structures. , 2018, , .		0
193	Finite Element Models of One Dimensional Flows With Node-Dependent Accuracy. , 2018, , .		0
194	Elastoplastic and progressive failure analysis of fiber-reinforced composites via an efficient nonlinear microscale model. Aerotecnica Missili & Spazio, 2018, 97, 103-110.	0.9	8
195	Axiomatic/Asymptotic Method and Best Theory Diagram for Composite Plates and Shells. , 2018, , 1-14.		0
196	Virtual Vibration Correlation Technique (VCT) for Nonlinear Analysis of Metallic and Composite Structures. , 2018, , .		1
197	Advanced Zig-Zag Beam Theories for Sandwich Structures Analyses. , 2018, , .		2
198	Geometrically Nonlinear Analysis of Beam Structures via Hierarchical One-Dimensional Finite Elements. Mathematical Problems in Engineering, 2018, 2018, 1-22.	1.1	10

#	Article	IF	CITATIONS
199	Nonlinear Dynamics of Rotating Structures and Helicopter Blades. , 2018, , .		0
200	Effect of Nonstructural Masses on Civil Structures by CUF-Based Finite Element Models. International Journal for Computational Methods in Engineering Science and Mechanics, 2018, 19, 253-267.	2.1	1
201	Node-dependent kinematic elements for the dynamic analysis of beams with piezo-patches. Journal of Intelligent Material Systems and Structures, 2018, 29, 3333-3345.	2.5	5
202	Accurate Evaluation of Interlaminar Stresses in Composite Laminates via Mixed One-Dimensional Formulation. AIAA Journal, 2018, 56, 4582-4594.	2.6	11
203	3D-wave propagation in generalized thermoelastic functionally graded disks. Composite Structures, 2018, 206, 941-951.	5.8	17
204	A global-local approach for the elastoplastic analysis of compact and thin-walled structures via refined models. Computers and Structures, 2018, 206, 54-65.	4.4	30
205	Frequency and mode change in the large deflection and post-buckling of compact and thin-walled beams. Journal of Sound and Vibration, 2018, 432, 88-104.	3.9	35
206	A general multi-scale two-level optimisation strategy for designing composite stiffened panels. Composite Structures, 2018, 201, 968-979.	5.8	42
207	Accurate evaluation of failure indices of composite layered structures via various FE models. Composites Science and Technology, 2018, 167, 174-189.	7.8	42
208	Analysis of multilayered structures embedding viscoelastic layers by higher-order, and zig-zag plate elements. Composites Part B: Engineering, 2018, 154, 77-89.	12.0	36
209	Accurate Nonlinear Dynamics and Mode Aberration of Rotating Blades. Journal of Applied Mechanics, Transactions ASME, 2018, 85, .	2.2	25
210	Classical, higher-order, zig-zag and variable kinematic shell elements for the analysis of composite multilayered structures. European Journal of Mechanics, A/Solids, 2018, 72, 97-110.	3.7	47
211	Wave propagation in compact, thin-walled, layered, and heterogeneous structures using variable kinematics finite elements. International Journal for Computational Methods in Engineering Science and Mechanics, 2018, 19, 207-220.	2.1	4
212	Effect of Localized Damages on the Free Vibration Analysis of Civil Structures by Component-Wise Approach. Journal of Structural Engineering, 2018, 144, 04018113.	3.4	1
213	Meshless analysis of metallic and composite beam structures by advanced hierarchical models with layer-wise capabilities. Composite Structures, 2018, 200, 380-395.	5.8	9
214	Evaluation of In-Plane and Out-of-Plane Stresses in Composite Structures Subjected to Large Displacements/Rotations. , 2018, , .		1
215	Node-Dependent Kinematics, Multilayered Beam, Plate, and Shell Elements. , 2018, , 1-14.		1

216 Variable-Kinematics, Meshless Analysis of Composite Beams. , 2018, , 15-28.

#	Article	IF	CITATIONS
217	Non-Linear Analysis of Bio-Structures Through Refined Beam Models. , 2018, , .		0
218	Influence of zig-zag and warping effects on buckling of functionally graded sandwich plates according to sinusoidal shear deformation theories. Mechanics of Advanced Materials and Structures, 2017, 24, 360-376.	2.6	36
219	Application of refined beam elements to the coupled-field analysis of magnetostrictive microbeams. Composites Part B: Engineering, 2017, 115, 14-20.	12.0	12
220	Multilayered plate elements accounting for refined theories and node-dependent kinematics. Composites Part B: Engineering, 2017, 114, 189-210.	12.0	37
221	Node-dependent kinematics, refined zig-zag and multi-line beam theories for the analysis of composite structures. , 2017, , .		0
222	Cross-sectional mapping for refined beam elements with applications to shell-like structures. Computational Mechanics, 2017, 59, 1031-1048.	4.0	16
223	Large-deflection and post-buckling analyses of laminated composite beams by Carrera Unified Formulation. Composite Structures, 2017, 170, 40-52.	5.8	133
224	The analysis of tapered structures using a component-wise approach based on refined one-dimensional models. Aerospace Science and Technology, 2017, 65, 141-156.	4.8	12
225	Best theory diagrams for multilayered plates considering multifield analysis. Journal of Intelligent Material Systems and Structures, 2017, 28, 2184-2205.	2.5	10
226	Analysis of laminated composite structures with embedded piezoelectric sheets by variable kinematic shell elements. Journal of Intelligent Material Systems and Structures, 2017, 28, 2959-2987.	2.5	30
227	An axiomatic/asymptotic evaluation of best theories for isotropic metallic and functionally graded plates employing non-polynomic functions. Aerospace Science and Technology, 2017, 68, 179-192.	4.8	9
228	Exact solutions for free vibration analysis of laminated, box and sandwich beams by refined layer-wise theory. Composite Structures, 2017, 175, 28-45.	5.8	33
229	A variable kinematic shell formulation applied to thermal stress of laminated structures. Journal of Thermal Stresses, 2017, 40, 803-827.	2.0	37
230	Effect of Solid Mass Consumption on the Free-Vibration Analysis of Launchers. Journal of Spacecraft and Rockets, 2017, 54, 774-781.	1.9	2
231	Extension of MITC to higherâ€order beam models and shear locking analysis for compact, thinâ€walled, and composite structures. International Journal for Numerical Methods in Engineering, 2017, 112, 1889-1908.	2.8	27
232	On dynamic analysis of variable thickness disks and complex rotors subjected to thermal and mechanical prestresses. Journal of Sound and Vibration, 2017, 405, 68-85.	3.9	8
233	Dynamic Analyses of Axisymmetric Rotors Through Three-Dimensional Approaches and High-Fidelity Beam Theories. Journal of Vibration and Acoustics, Transactions of the ASME, 2017, 139, 061008.	1.6	10
234	Global-local analysis of laminated plates by node-dependent kinematic finite elements with variable ESL/LW capabilities. Composite Structures, 2017, 172, 1-14.	5.8	46

#	Article	IF	CITATIONS
235	Component-wise vibration analysis of stiffened plates accounting for stiffener modes. CEAS Aeronautical Journal, 2017, 8, 385-412.	1.7	5
236	Shell elements with through-the-thickness variable kinematics for the analysis of laminated composite and sandwich structures. Composites Part B: Engineering, 2017, 111, 294-314.	12.0	61
237	Hygrothermal analysis of multilayered composite plates by variable kinematic finite elements. Journal of Thermal Stresses, 2017, 40, 1502-1522.	2.0	20
238	Variable kinematic shell elements for composite laminates accounting for hygrothermal effects. Journal of Thermal Stresses, 2017, 40, 1523-1544.	2.0	36
239	Unified finite element approach for generalized coupled thermoelastic analysis of 3D beam-type structures, part 1: Equations and formulation. Journal of Thermal Stresses, 2017, 40, 1386-1401.	2.0	21
240	Unified finite element approach for generalized coupled thermoelastic analysis of 3D beam-type structures, part 2: Numerical evaluations. Journal of Thermal Stresses, 2017, 40, 1402-1416.	2.0	13
241	Various refined theories applied to damped viscoelastic beams and circular rings. Acta Mechanica, 2017, 228, 4235-4248.	2.1	22
242	Exact solutions for static analysis of laminated, box and sandwich beams by refined layer-wise theory. Composites Part B: Engineering, 2017, 131, 62-75.	12.0	26
243	One-dimensional finite element formulation with node-dependent kinematics. Computers and Structures, 2017, 192, 114-125.	4.4	42
244	Micromechanics of periodically heterogeneous materials using higher-order beam theories and the mechanics of structure genome. Composite Structures, 2017, 180, 484-496.	5.8	29
245	Computationally efficient, high-fidelity micromechanics framework using refined 1D models. Composite Structures, 2017, 181, 358-367.	5.8	23
246	A free vibration analysis of three-dimensional sandwich beams using hierarchical one-dimensional finite elements. Composites Part B: Engineering, 2017, 110, 7-19.	12.0	51
247	Static and free vibration analysis of cross-ply laminated plates using the Reissner-mixed variational theorem and the cell based smoothed finite element method. European Journal of Mechanics, A/Solids, 2017, 62, 14-21.	3.7	18
248	A refined finite element method for stress analysis of rotors and rotating disks with variable thickness. Acta Mechanica, 2017, 228, 575-594.	2.1	9
249	Evaluation of energy and failure parameters in composite structures via a Component-Wise approach. Composites Part B: Engineering, 2017, 108, 53-64.	12.0	17
250	Hierarchical theories of structures based on Legendre polynomial expansions with finite element applications. International Journal of Mechanical Sciences, 2017, 120, 286-300.	6.7	68
251	Best Theory Diagrams for cross-ply composite plates using polynomial, trigonometric and exponential thickness expansions. Composite Structures, 2017, 161, 362-383.	5.8	10
252	Node-Dependent Kinematic One-Dimensional Models for the Analysis of Rotating Structures. , 2017, , .		1

15

#	Article	IF	CITATIONS
253	Micro-, Meso- and Macro-Scale Analysis of Composite Laminates by Unified Theory of Structures. , 2017, , .		2
254	A Component-Wise Approach for the Failure of Complex Aeronautical Structures. , 2017, , .		0
255	Micromechanical Progressive Failure Analysis of Fiber-Reinforced Composite Using Refined Beam Models. , 2017, , .		1
256	Reissner's Mixed Variational Theorem for Layer-Wise Refined Beam Models Based on the Unified Formulation. , 2017, , .		2
257	Through-the-thickness thermal fields in one-layer and multilayered structures. , 2017, , 293-309.		о
258	Static response of uncoupled thermoelastic problems. , 2017, , 311-326.		0
259	Static and dynamic responses of coupled thermoelastic problems. , 2017, , 345-360.		1
260	Thermal stresses in functionally graded materials. , 2017, , 375-391.		0
261	Computational methods for thermal stress analysis. , 2017, , 241-290.		1
262	Thermal buckling. , 2017, , 361-373.		0
263	Coupled and uncoupled variational formulations. , 2017, , 81-87.		0
264	Advanced theories for composite beams, plates and shells. , 2017, , 117-217.		6
265	Multilayered, anisotropic thermal stress structures. , 2017, , 219-239.		Ο
266	Thermal effect on flutter of panels. , 2017, , 393-401.		0
267	Free vibration response of uncoupled thermoelastic problems. , 2017, , 327-343.		0
268	Multiobjective Best Theory Diagrams for cross-ply composite plates employing polynomial, zig-zag, trigonometric and exponential thickness expansions. Composite Structures, 2017, 176, 860-876.	5.8	12
269	MULTILAYERED PLATE ELEMENTS WITH NODE-DEPENDENT KINEMATICS FOR THE ANALYSIS OF COMPOSITE AND SANDWICH STRUCTURES. Facta Universitatis, Series: Mechanical Engineering, 2017, 15, 1.	4.6	35
270	Application of aerospace structural models to marine engineering. Advances in Aircraft and Spacecraft Science, 2017, 4, 219-235.	0.5	0

#	Article	IF	CITATIONS
271	Exact Solutions for Dynamic and Quasi-Static Thermoelasticity Problems in Rotating Disks. Aerotecnica Missili & Spazio, 2016, 95, 3-12.	0.9	2
272	Component-Wise Models for the Accurate Dynamic and Buckling Analysis of Composite Wing Structures. , 2016, , .		0
273	Analysis of Curved Composite Structures Through Refined 1D Finite Elements With Aerospace Applications. , 2016, , .		0
274	High-Fidelity One-Dimensional Models for Tapered Structures Analyses. , 2016, , .		0
275	A Component-Wise Approach to Analyse a Composite Launcher Structure Subjected to Loading Factor. , 2016, , .		Ο
276	Layerwise Analyses of Compact and Thin-Walled Beams Made of Viscoelastic Materials. Journal of Vibration and Acoustics, Transactions of the ASME, 2016, 138, .	1.6	19
277	A thermal stress finite element analysis of beam structures by hierarchical modelling. Composites Part B: Engineering, 2016, 95, 179-195.	12.0	25
278	Analysis of laminated composites and sandwich structures by trigonometric, exponential and miscellaneous polynomials and a MITC9 plate element. Composite Structures, 2016, 150, 103-114.	5.8	37
279	Numerical analyses of piezoceramic actuators for high temperature applications. Composite Structures, 2016, 151, 36-46.	5.8	10
280	Three-dimensional analysis of freely vibrating multilayered piezoelectric plates through adaptive global piecewise-smooth functions. Journal of Intelligent Material Systems and Structures, 2016, 27, 2862-2876.	2.5	6
281	A refined one-dimensional rotordynamics model with three-dimensional capabilities. Journal of Sound and Vibration, 2016, 366, 343-356.	3.9	24
282	Higher-order theories and radial basis functions applied to free vibration analysis of thin-walled beams. Mechanics of Advanced Materials and Structures, 2016, 23, 1080-1091.	2.6	33
283	Static analysis of reinforced thin-walled plates and shells by means of finite element models. International Journal for Computational Methods in Engineering Science and Mechanics, 2016, 17, 106-126.	2.1	9
284	Sensitivity analysis of the damping properties of viscoelastic composite structures according to the layers thicknesses. Composite Structures, 2016, 149, 11-25.	5.8	27
285	Bending and vibrations analyses of laminated beams by using a zig-zag-layer-wise theory. Composites Part B: Engineering, 2016, 98, 269-280.	12.0	43
286	Approximation of anisotropic multilayered plates through RMVT and MITC elements. Composite Structures, 2016, 158, 252-261.	5.8	9
287	Free-vibration tailoring of single- and multi-bay laminated box structures by refined beam theories. Thin-Walled Structures, 2016, 109, 40-49.	5.3	23
288	MITC9 shell finite elements with miscellaneous through-the-thickness functions for the analysis of laminated structures. Composite Structures, 2016, 154, 360-373.	5.8	43

#	Article	IF	CITATIONS
289	Free Vibrations of Damaged Aircraft Structures by Component-Wise Analysis. AIAA Journal, 2016, 54, 3091-3106.	2.6	11
290	3D thermoelastic analysis of rotating disks having arbitrary profile based on a variable kinematic 1D finite element method. Journal of Thermal Stresses, 2016, 39, 1572-1587.	2.0	12
291	Hierarchical one-dimensional finite elements for the thermal stress analysis of three-dimensional functionally graded beams. Composite Structures, 2016, 153, 514-528.	5.8	19
292	Refined theories based on non-polynomial kinematics for the thermoelastic analysis of functionally graded plates. Journal of Thermal Stresses, 2016, 39, 835-853.	2.0	19
293	A radial basis functions solution for the analysis of laminated doubly-curved shells by a Reissner-Mixed Variational Theorem. Mechanics of Advanced Materials and Structures, 2016, 23, 1068-1079.	2.6	20
294	Free vibration analysis of reinforced thin-walled plates and shells through various finite element models. Mechanics of Advanced Materials and Structures, 2016, 23, 1005-1018.	2.6	21
295	Aerodynamic and mechanical hierarchical aeroelastic analysis of composite wings. Mechanics of Advanced Materials and Structures, 2016, 23, 997-1004.	2.6	5
296	Thermal stress analysis of laminated structures by a variable kinematic MITC9 shell element. Journal of Thermal Stresses, 2016, 39, 121-141.	2.0	35
297	Analysis of laminated beams via Unified Formulation and Legendre polynomial expansions. Composite Structures, 2016, 156, 78-92.	5.8	79
298	Mixed-dimensional modeling by means of solid and higher-order multi-layered plate finite elements. Mechanics of Advanced Materials and Structures, 2016, 23, 960-970.	2.6	7
299	Linearized buckling analysis of isotropic and composite beam-columns by Carrera Unified Formulation and dynamic stiffness method. Mechanics of Advanced Materials and Structures, 2016, 23, 1092-1103.	2.6	46
300	A Thermal Stress Analysis of Three-Dimensional Beams by Refined One-Dimensional Models and Strong Form Solutions. Applied Mechanics and Materials, 2016, 828, 139-171.	0.2	6
301	High-Fidelity and Computationally Efficient Component-Wise Structural Models: An Overview of Applications and Perspectives. Applied Mechanics and Materials, 2016, 828, 175-196.	0.2	2
302	Refined beam finite elements for static and dynamic analysis of hull structures. Computers and Structures, 2016, 167, 37-49.	4.4	7
303	Static analysis of functionally graded plates using new non-polynomial displacement fields via Carrera Unified Formulation. Composites Part B: Engineering, 2016, 89, 127-142.	12.0	63
304	Accurate static response of single- and multi-cell laminated box beams. Composite Structures, 2016, 136, 372-383.	5.8	40
305	Non-linear transient dynamic analysis of sandwich plate with composite face-sheets embedded with shape memory alloy wires and flexible core- based on the mixed LW (layer-wise)/ESL (equivalent single) Tj ETQq1	1 027843	14 4g BT /Ove
306	Free vibration analysis of simply supported beams with solid and thin-walled cross-sections using higher-order theories based on displacement variables. Thin-Walled Structures, 2016, 98, 478-495.	5.3	37

#	Article	IF	CITATIONS
307	Accurate Response of Wing Structures to Free-Vibration, Load Factors, and Nonstructural Masses. AIAA Journal, 2016, 54, 227-241.	2.6	26
308	Carrera Unified Formulation for Free-Vibration Analysis of Aircraft Structures. AIAA Journal, 2016, 54, 280-292.	2.6	44
309	Capabilities of 1D CUF-based models to analyse metallic/composite rotors. Advances in Aircraft and Spacecraft Science, 2016, 3, 1-14.	0.5	11
310	Gasdynamics of rapid and explosive decompressions of pressurized aircraft including active venting. Advances in Aircraft and Spacecraft Science, 2016, 3, 77-93.	0.5	9
311	Free vibration analysis of damaged beams via refined models. Advances in Aircraft and Spacecraft Science, 2016, 3, 95-112.	0.5	5
312	Recent developments on refined theories for beams with applications. Mechanical Engineering Reviews, 2015, 2, 14-00298-14-00298.	4.7	93
313	Evaluation of mixed theories for laminated plates through the axiomatic/asymptotic method. Composites Part B: Engineering, 2015, 76, 260-272.	12.0	22
314	Results on best theories for metallic and laminated shells including Layer-Wise models. Composite Structures, 2015, 126, 285-298.	5.8	40
315	Aeroelastic Analysis of Composite Pinched Panels Using Higher-Order Shell Elements. Journal of Spacecraft and Rockets, 2015, 52, 999-1003.	1.9	9
316	Vibration Analysis of Thin/Thick, Composites/Metallic Spinning Cylindrical Shells by Refined Beam Models. Journal of Vibration and Acoustics, Transactions of the ASME, 2015, 137, .	1.6	31
317	Axiomatic/Asymptotic Technique Applied to Refined Theories for Piezoelectric Plates. Mechanics of Advanced Materials and Structures, 2015, 22, 107-124.	2.6	25
318	Application of a Refined Multi-Field Beam Model for the Analysis of Complex Configurations. Mechanics of Advanced Materials and Structures, 2015, 22, 52-66.	2.6	11
319	Axiomatic/Asymptotic Evaluation of Refined Plate Models for Thermomechanical Analysis. Journal of Thermal Stresses, 2015, 38, 165-187.	2.0	5
320	Three-dimensional free vibration of multi-layered piezoelectric plates through approximate and exact analyses. Journal of Intelligent Material Systems and Structures, 2015, 26, 489-504.	2.5	16
321	Flutter analysis of fixed and rotary wings through a one-dimensional unified formulation. Composite Structures, 2015, 133, 381-389.	5.8	7
322	Static and free vibration analysis of laminated beams by refined theory based on Chebyshev polynomials. Composite Structures, 2015, 132, 1248-1259.	5.8	61
323	Advanced models for free vibration analysis of laminated beams with compact and thin-walled open/closed sections. Journal of Composite Materials, 2015, 49, 2085-2101.	2.4	32
324	Vibrational Analysis for an Axially Moving Microbeam with Two Temperatures. Journal of Thermal Stresses, 2015, 38, 569-590.	2.0	25

#	Article	IF	CITATIONS
325	A layer-wise MITC9 finite element for the free-vibration analysis of plates with piezo-patches. International Journal of Smart and Nano Materials, 2015, 6, 85-104.	4.2	44
326	Evaluation of the accuracy of classical beam FE models via locking-free hierarchically refined elements. International Journal of Mechanical Sciences, 2015, 100, 169-179.	6.7	14
327	Dynamic response of aerospace structures by means of refined beam theories. Aerospace Science and Technology, 2015, 46, 360-373.	4.8	25
328	Heat conduction and Thermal Stress Analysis of laminated composites by a variable kinematic MITC9 shell element. Curved and Layered Structures, 2015, 2, .	1.3	14
329	Variable Kinematic Shell Elements for the Analysis of Electro-Mechanical Problems. Mechanics of Advanced Materials and Structures, 2015, 22, 77-106.	2.6	42
330	Static analyses of FGM beams by various theories and finite elements. Composites Part B: Engineering, 2015, 72, 1-9.	12.0	123
331	Comparison of various 1D, 2D and 3D FE models for the analysis of thin-walled box with transverse ribs subjected to load factors. Finite Elements in Analysis and Design, 2015, 95, 1-11.	3.2	16
332	Guest Editorial ofMAMSSpecial Issue on Modeling and Analysis of Smart Structures. Mechanics of Advanced Materials and Structures, 2015, 22, 1-2.	2.6	1
333	Stress, vibration and buckling analyses of FGM plates—A state-of-the-art review. Composite Structures, 2015, 120, 10-31.	5.8	341
334	Vibration Modeling of Multilayer Composite Structures with Viscoelastic Layers. Mechanics of Advanced Materials and Structures, 2015, 22, 136-149.	2.6	50
335	Refined 1D Finite Elements for the Analysis of Secondary, Primary, and Complete Civil Engineering Structures. Journal of Structural Engineering, 2015, 141, .	3.4	41
336	Accurate Free Vibration Analysis of Launcher Structures Using Refined 1D Models. International Journal of Aeronautical and Space Sciences, 2015, 16, 206-222.	2.0	7
337	Influence of Non-Structural Localized Inertia on Free Vibration Response of Thin-Walled Structures by Variable Kinematic Beam Formulations. Shock and Vibration, 2014, 2014, 1-16.	0.6	6
338	Comparisons between 1D (Beam) and 2D (Plate/Shell) Finite Elements to Analyze Thin Walled Structures. Aerotecnica Missili & Spazio, 2014, 93, 3-16.	0.9	6
339	Evaluation of refined theories for multilayered shells via Axiomatic/Asymptotic method. Journal of Mechanical Science and Technology, 2014, 28, 4663-4672.	1.5	13
340	Aeroelastic Analysis of Pinched Panels in Supersonic Flow Changing with Altitude. Journal of Spacecraft and Rockets, 2014, 51, 187-199.	1.9	26
341	Free vibration analysis of laminated beam by polynomial, trigonometric, exponential and zig-zag theories. Journal of Composite Materials, 2014, 48, 2299-2316.	2.4	36
342	Variable Kinematic One-Dimensional Finite Elements for the Analysis of Rotors Made of Composite Materials. Journal of Engineering for Gas Turbines and Power, 2014, 136, .	1.1	42

#	Article	IF	CITATIONS
343	Free Vibration Response of Thin and Thick Nonhomogeneous Shells by Refined One-Dimensional Analysis. Journal of Vibration and Acoustics, Transactions of the ASME, 2014, 136, .	1.6	12
344	Solution in Elementary Functions to a BVP of Thermoelasticity: Green's Functions and Green's-Type Integral Formula for Thermal Stresses within a Half-Strip. Journal of Thermal Stresses, 2014, 37, 947-968.	2.0	9
345	Thermal Stability of FGM Sandwich Plates Under Various Through-the-Thickness Temperature Distributions. Journal of Thermal Stresses, 2014, 37, 1449-1481.	2.0	102
346	Analysis of Functionally Graded Material Plates Using Triangular Elements with Cell-Based Smoothed Discrete Shear Gap Method. Mathematical Problems in Engineering, 2014, 2014, 1-13.	1.1	51
347	Aeroelastic analysis of versatile thermal insulation (VTI) panels with pinched boundary conditions. CEAS Space Journal, 2014, 6, 23-35.	2.3	7
348	Coupled thermoelastic effect in free vibration analysis of anisotropic multilayered plates and FGM plates by using a variable-kinematics Ritz formulation. European Journal of Mechanics, A/Solids, 2014, 44, 157-174.	3.7	47
349	Refined hierarchical kinematics quasi-3D Ritz models for free vibration analysis of doubly curved FGM shells and sandwich shells with FGM core. Journal of Sound and Vibration, 2014, 333, 1485-1508.	3.9	83
350	Free vibration of FGM layered beams by various theories and finite elements. Composites Part B: Engineering, 2014, 59, 269-278.	12.0	108
351	Free vibration of tapered beams and plates based on unified beam theory. JVC/Journal of Vibration and Control, 2014, 20, 2450-2463.	2.6	8
352	Finite element analysis of free vibration of the delaminated composite plate with variable kinematic multilayered plate elements. Composites Part B: Engineering, 2014, 66, 453-465.	12.0	36
353	Analysis of composite plates through cell-based smoothed finite element and 4-noded mixed interpolation of tensorial components techniques. Computers and Structures, 2014, 135, 83-87.	4.4	13
354	Refined dynamic stiffness elements applied to free vibration analysis of generally laminated composite beams with arbitrary boundary conditions. Composite Structures, 2014, 110, 305-316.	5.8	92
355	Free vibration analysis of composite plates by higher-order 1D dynamic stiffness elements and experiments. Composite Structures, 2014, 118, 654-663.	5.8	20
356	Thin-walled beams subjected to load factors and non-structural masses. International Journal of Mechanical Sciences, 2014, 81, 109-119.	6.7	14
357	Use of axiomatic/asymptotic approach to evaluate various refined theories for sandwich shells. Composite Structures, 2014, 109, 139-149.	5.8	23
358	Analysis of thick isotropic and cross-ply laminated plates by generalized differential quadrature method and a Unified Formulation. Composites Part B: Engineering, 2014, 58, 544-552.	12.0	112
359	Multi-line enhanced beam model for the analysis of laminated composite structures. Composites Part B: Engineering, 2014, 57, 112-119.	12.0	30
360	Static analysis of doubly-curved anisotropic shells and panels using CUF approach, differential geometry and differential quadrature method. Composite Structures, 2014, 107, 675-697.	5.8	123

#	Article	IF	CITATIONS
361	Refined shell finite elements based on RMVT and MITC for the analysis of laminated structures. Composite Structures, 2014, 113, 492-497.	5.8	22
362	Free vibration analysis of civil engineering structures by component-wise models. Journal of Sound and Vibration, 2014, 333, 4597-4620.	3.9	79
363	Analysis of Complex Structures Coupling Variable Kinematics One-Dimensional Models. , 2014, , .		3
364	Thermomechanical Coupling in Plate and Shell Structures – Some Significant Results. , 2014, , 5961-5970.		1
365	Thermal Stress Analysis of Functionally Graded Material Plates. , 2014, , 5167-5174.		1
366	Thermomechanical Bending in Functionally Graded Material Shells. , 2014, , 5950-5956.		1
367	Hierarchical theories for a linearised stability analysis of thin-walled beams with open and closed cross-section. Advances in Aircraft and Spacecraft Science, 2014, 1, 253-271.	0.5	8
368	Flutter analysis by refined 1D dynamic stiffness elements and doublet lattice method. Advances in Aircraft and Spacecraft Science, 2014, 1, 291-310.	0.5	5
369	Variable kinematic beam elements for electro-mechanical analysis. Smart Structures and Systems, 2014, 13, 517-546.	1.9	11
370	Nonhomogeneous atherosclerotic plaque analysis via enhanced 1D structural models. Smart Structures and Systems, 2014, 13, 659-683.	1.9	5
371	Temperature Profiles in Composite and Sandwich Shells. , 2014, , 4797-4805.		0
372	Temperature Profiles in One-Layered and Multilayered Isotropic Shells. , 2014, , 4805-4813.		0
373	Thermomechanical Coupling in Multilayered Plates and Shells. , 2014, , 5956-5961.		0
374	On the development of the Anuloid, a disk-shaped VTOL aircraft for urban areas. Advances in Aircraft and Spacecraft Science, 2014, 1, 353-378.	0.5	3
375	Shell finite elements with different throughâ€theâ€thickness kinematics for the linear analysis of cylindrical multilayered structures. International Journal for Numerical Methods in Engineering, 2013, 93, 160-182.	2.8	58
376	Analysis of Rotor Dynamic by One-Dimensional Variable Kinematic Theories. Journal of Engineering for Gas Turbines and Power, 2013, 135, .	1.1	32
377	Analysis of reinforced and thin-walled structures by multi-line refined 1D/beam models. International Journal of Mechanical Sciences, 2013, 75, 278-287.	6.7	43
378	A refined structural model for static aeroelastic response and divergence of metallic and composite wings. CEAS Aeronautical Journal, 2013, 4, 175-189.	1.7	11

#	Article	IF	CITATIONS
379	Mixed LW/ESL models for the analysis of sandwich plates with composite faces. Composite Structures, 2013, 98, 330-339.	5.8	34
380	Free vibration analysis of rotating composite blades via Carrera Unified Formulation. Composite Structures, 2013, 106, 317-325.	5.8	112
381	Exact dynamic stiffness elements based on one-dimensional higher-order theories for free vibration analysis of solid and thin-walled structures. Journal of Sound and Vibration, 2013, 332, 6104-6127.	3.9	105
382	A nonlinear finite element model using a unified formulation for dynamic analysis of multilayer composite plate embedded with SMA wires. Composite Structures, 2013, 106, 635-645.	5.8	34
383	Axiomatic/asymptotic evaluation of multilayered plate theories by using single and multi-points error criteria. Composite Structures, 2013, 106, 393-406.	5.8	24
384	Full Aircraft Dynamic Response by Simplified Structural Models. , 2013, , .		5
385	Bending and Vibration of Laminated Plates by a Layerwise Formulation and Collocation with Radial Basis Functions. Mechanics of Advanced Materials and Structures, 2013, 20, 624-637.	2.6	16
386	A Thermo-Mechanical Analysis of Isotropic and Composite Beams via Collocation with Radial Basis Functions. Journal of Thermal Stresses, 2013, 36, 1169-1199.	2.0	26
387	Free vibration analysis of functionally graded shells by a higher-order shear deformation theory and radial basis functions collocation, accounting for through-the-thickness deformations. European Journal of Mechanics, A/Solids, 2013, 37, 24-34.	3.7	142
388	Use of Lagrange multipliers to combine 1D variable kinematic finite elements. Computers and Structures, 2013, 129, 194-206.	4.4	52
389	Thermo-Mechanical Buckling Analysis of Anisotropic Multilayered Composite and Sandwich Plates by Using Refined Variable-Kinematics Theories. Journal of Thermal Stresses, 2013, 36, 321-350.	2.0	47
390	Reissner's mixed variational theorem toward MITC finite elements for multilayered plates. Composite Structures, 2013, 99, 443-452.	5.8	23
391	Laminated beam analysis by polynomial, trigonometric, exponential and zig-zag theories. European Journal of Mechanics, A/Solids, 2013, 41, 58-69.	3.7	99
392	Static analysis of multilayered smart shells subjected to mechanical, thermal and electrical loads. Meccanica, 2013, 48, 1263-1287.	2.0	18
393	Classical, Refined, and Component-Wise Analysis of Reinforced-Shell Wing Structures. AIAA Journal, 2013, 51, 1255-1268.	2.6	78
394	Some Results on Thermal Stress of Layered Plates and Shells by Using Unified Formulation. Journal of Thermal Stresses, 2013, 36, 589-625.	2.0	34
395	Advances in the Ritz formulation for free vibration response of doubly-curved anisotropic laminated composite shallow and deep shells. Composite Structures, 2013, 101, 111-128.	5.8	61
396	Radial basis functions collocation for the bending and free vibration analysis of laminated plates using the Reissner-Mixed Variational Theorem. European Journal of Mechanics, A/Solids, 2013, 39, 104-112.	3.7	33

#	Article	IF	CITATIONS
397	Free vibration analysis of sandwich plates with anisotropic face sheets in thermal environment by using the hierarchical trigonometric Ritz formulation. Composites Part B: Engineering, 2013, 50, 67-81.	12.0	76
398	Analysis of composite plates by a unified formulation-cell based smoothed finite element method and field consistent elements. Composite Structures, 2013, 105, 75-81.	5.8	30
399	Isogeometric analysis of laminated composite and sandwich plates using a layerwise deformation theory. Composite Structures, 2013, 104, 196-214.	5.8	172
400	Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique. Composites Part B: Engineering, 2013, 44, 657-674.	12.0	426
401	Free vibration analysis of composite beams via refined theories. Composites Part B: Engineering, 2013, 44, 540-552.	12.0	96
402	A finite element model using a unified formulation for the analysis of viscoelastic sandwich laminates. Composites Part B: Engineering, 2013, 45, 1258-1264.	12.0	114
403	Accurate free vibration analysis of thermo-mechanically pre/post-buckled anisotropic multilayered plates based on a refined hierarchical trigonometric Ritz formulation. Composite Structures, 2013, 95, 381-402.	5.8	60
404	A thermo-mechanical analysis of functionally graded beams via hierarchical modelling. Composite Structures, 2013, 95, 676-690.	5.8	59
405	Non-linear dynamic analysis of a sandwich beam with pseudoelastic SMA hybrid composite faces based on higher order finite element theory. Composite Structures, 2013, 96, 243-255.	5.8	88
406	A refined 1D element for the structural analysis of single and multiple fiber/matrix cells. Composite Structures, 2013, 96, 455-468.	5.8	18
407	Static and Dynamic Analysis of Aircraft Structures by Component-Wise Approach. , 2013, , .		0
408	Free Vibration Analysis of Rotating Structures by One-Dimensional, Variable Kinematic Theories. , 2013, , .		3
409	Free Vibration Analysis of Thin-Walled Cylinders Reinforced With Longitudinal and Transversal Stiffeners. Journal of Vibration and Acoustics, Transactions of the ASME, 2013, 135, .	1.6	23
410	Analysis of Thin-Walled Structures With Longitudinal and Transversal Stiffeners. Journal of Applied Mechanics, Transactions ASME, 2013, 80, .	2.2	19
411	Component-Wise Method Applied to Vibration of Wing Structures. Journal of Applied Mechanics, Transactions ASME, 2013, 80, .	2.2	51
412	Accurate Buckling Analysis of Composite Layered Plates with Combined Thermal and Mechanical Loadings. Journal of Thermal Stresses, 2013, 36, 1-18.	2.0	27
413	Evaluation of Failure Parameters in Composite Structures by Component-Wise Approach. , 2013, , .		4
414	CLASSICAL, REFINED, ZIG-ZAG AND LAYER-WISE MODELS FOR LAMINATED STRUCTURES. Computational and Experimental Methods in Structures, 2013, , 135-172.	0.3	2

#	Article	IF	CITATIONS
415	Static Aeroelastic Response of Wing-Structures Accounting for In-Plane Cross-Section Deformation. International Journal of Aeronautical and Space Sciences, 2013, 14, 310-323.	2.0	9
416	On the effectiveness of higher-order terms in layer-wise shell models. , 2013, , 69-72.		1
417	Buckling behaviour of cross-ply laminated plates by a higher-order shear deformation theory. Science and Engineering of Composite Materials, 2012, 19, 119-125.	1.4	8
418	Failure Analysis of Composite Plates Subjected to Localized Loadings via a Unified Formulation. Journal of Engineering Mechanics - ASCE, 2012, 138, 458-467.	2.9	3
419	Analysis of sandwich plates by radial basis functions collocation, according to Murakami's Zig-Zag theory. Journal of Sandwich Structures and Materials, 2012, 14, 505-524.	3.5	14
420	Advanced Layer-Wise Shells Theories Based on Trigonometric Functions Expansion. , 2012, , .		1
421	Coupling of hierarchical piezoelectric plate finite elements via Arlequin method. Journal of Intelligent Material Systems and Structures, 2012, 23, 749-764.	2.5	18
422	Analysis of nanoâ€reinforced layered plates via classical and refined twoâ€dimensional theories. Multidiscipline Modeling in Materials and Structures, 2012, 8, 4-31.	1.3	15
423	Static analysis of functionally graded sandwich plates according to a hyperbolic theory considering Zig-Zag and warping effects. Advances in Engineering Software, 2012, 52, 30-43.	3.8	97
424	Computations and evaluations of higher-order theories for free vibration analysis of beams. Journal of Sound and Vibration, 2012, 331, 4269-4284.	3.9	56
425	Dynamic response of thin-walled structures by variable kinematic one-dimensional models. Journal of Sound and Vibration, 2012, 331, 5268-5282.	3.9	32
426	Buckling of thin-walled beams by a refined theory. Journal of Zhejiang University: Science A, 2012, 13, 747-759.	2.4	9
427	Refined One-Dimensional Formulations for Laminated Structure Analysis. AIAA Journal, 2012, 50, 176-189.	2.6	107
428	Performance of CUF Approach to Analyze the Structural Behavior of Slender Bodies. Journal of Structural Engineering, 2012, 138, 285-297.	3.4	79
429	Advanced Beam Formulations for Free-Vibration Analysis of Conventional and Joined Wings. Journal of Aerospace Engineering, 2012, 25, 282-293.	1.4	61
430	A Component-Wise Approach for the Failure Analysis of Composite Structures. , 2012, , .		4
431	Coupled Thermo-Electro-Mechanical Analysis of Smart Plates Embedding Composite and Piezoelectric Layers. Journal of Thermal Stresses, 2012, 35, 766-804.	2.0	29
432	Free Vibration Analysis for Layered Shells Accounting of Variable Kinematic and Thermo-Mechanical Coupling. Shock and Vibration, 2012, 19, 155-173.	0.6	2

#	Article	IF	CITATIONS
433	Effects of In-Plane Loading on Vibration of Composite Plates. Shock and Vibration, 2012, 19, 619-634.	0.6	5
434	Buckling analysis of sandwich plates with functionally graded skins using a new quasiâ€3D hyperbolic sine shear deformation theory and collocation with radial basis functions. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2012, 92, 749-766.	1.6	58
435	Variable kinematic plate elements coupled via Arlequin method. International Journal for Numerical Methods in Engineering, 2012, 91, 1264-1290.	2.8	24
436	A numerical assessment on two-dimensional failure criteria for composite layered structures. Composites Part B: Engineering, 2012, 43, 280-289.	12.0	40
437	A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates. Composites Part B: Engineering, 2012, 43, 711-725.	12.0	301
438	Radial basis functions-differential quadrature collocation and a unified formulation for bending, vibration and buckling analysis of laminated plates, according to Murakami's Zig-Zag theory. Computers and Structures, 2012, 90-91, 107-115.	4.4	30
439	Refined shell elements for the analysis of functionally graded structures. Composite Structures, 2012, 94, 415-422.	5.8	69
440	Buckling of composite thin walled beams by refined theory. Composite Structures, 2012, 94, 563-570.	5.8	39
441	Selection of appropriate multilayered plate theories by using a genetic like algorithm. Composite Structures, 2012, 94, 1175-1186.	5.8	52
442	A quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates. Composite Structures, 2012, 94, 1814-1825.	5.8	230
443	Ritz analysis of vibrating rectangular and skew multilayered plates based on advanced variable-kinematic models. Composite Structures, 2012, 94, 2118-2128.	5.8	33
444	Classical and refined shell models for the analysis of nano-reinforced structures. International Journal of Mechanical Sciences, 2012, 55, 104-117.	6.7	17
445	Component-wise analysis of laminated anisotropic composites. International Journal of Solids and Structures, 2012, 49, 1839-1851.	2.7	61
446	Refined shell model for the linear analysis of isotropic and composite elastic structures. European Journal of Mechanics, A/Solids, 2012, 34, 102-119.	3.7	10
447	Refined free vibration analysis of one-dimensional structures with compact and bridge-like cross-sections. Thin-Walled Structures, 2012, 56, 49-61.	5.3	47
448	Refined beam elements with only displacement variables and plate/shell capabilities. Meccanica, 2012, 47, 537-556.	2.0	180
449	Refined Shell Models for the Vibration Analysis of Multiwalled Carbon Nanotubes. Mechanics of Advanced Materials and Structures, 2011, 18, 476-483.	2.6	24
450	Toward Micromechanics of Coupled Fields Materials Containing Functionally Graded Inhomogeneities: Multi-Coating Approach. Mechanics of Advanced Materials and Structures, 2011, 18, 524-530.	2.6	8

#	Article	IF	CITATIONS
451	Analysis of Laminated Plates by Trigonometric Theory, Radial Basis, and Unified Formulation. AIAA Journal, 2011, 49, 1559-1562.	2.6	1
452	Guidelines and Recommendations on the Use of Higher Order Finite Elements for Bending Analysis of Plates. International Journal for Computational Methods in Engineering Science and Mechanics, 2011, 12, 303-324.	2.1	41
453	Selection of Appropriate Plate Theories by Using a Genetic Like Algorithms. , 2011, , .		2
454	Analysis of slender, thin walled, composite made structures with refined 1D theories. , 2011, , .		1
455	On the Effectiveness of Higher-Order Terms in Refined Beam Theories. Journal of Applied Mechanics, Transactions ASME, 2011, 78, .	2.2	139
456	Two higher order Zig-Zag theories for the accurate analysis of bending, vibration and buckling response of laminated plates by radial basis functions collocation and a unified formulation. Journal of Composite Materials, 2011, 45, 2523-2536.	2.4	31
457	Free Vibration Analysis of Composite Plates via Refined Theories Accounting for Uncertainties. Shock and Vibration, 2011, 18, 537-554.	0.6	10
458	Unified Formulation Applied to Free Vibrations Finite Element Analysis of Beams with Arbitrary Section. Shock and Vibration, 2011, 18, 485-502.	0.6	101
459	Multi-Model Beam Theories via the Arlequin Method. , 2011, , 151-168.		Ο
460	Evaluation of various through the thickness and curvature approximations in free vibration analysis of cylindrical composites shells. International Journal of Vehicle Noise and Vibration, 2011, 7, 212.	0.1	5
461	Heat conduction and thermal analysis in multilayered plates and shells. Mechanics Research Communications, 2011, 38, 449-455.	1.8	27
462	Static analysis of laminated beams via a unified formulation. Composite Structures, 2011, 94, 75-83.	5.8	65
463	Hierarchical theories for the free vibration analysis of functionally graded beams. Composite Structures, 2011, 94, 68-74.	5.8	102
464	Advanced variable kinematics Ritz and Galerkin formulations for accurate buckling and vibration analysis of anisotropic laminated composite plates. Composite Structures, 2011, 94, 50-67.	5.8	69
465	Analysis of laminated doubly-curved shells by a layerwise theory and radial basis functions collocation, accounting for through-the-thickness deformations. Computational Mechanics, 2011, 48, 13-25.	4.0	92
466	A variable kinematic Ritz formulation for vibration study of quadrilateral plates with arbitrary thickness. Journal of Sound and Vibration, 2011, 330, 4611-4632.	3.9	41
467	Bending of FGM plates by a sinusoidal plate formulation and collocation with radial basis functions. Mechanics Research Communications, 2011, 38, 368-371.	1.8	94
468	Equivalent electro-elastic properties of Macro Fiber Composite (MFC) transducers using asymptotic expansion approach. Composites Part B: Engineering, 2011, 42, 444-455.	12.0	47

#	Article	IF	CITATIONS
469	Analysis of laminated shells by a sinusoidal shear deformation theory and radial basis functions collocation, accounting for through-the-thickness deformations. Composites Part B: Engineering, 2011, 42, 1276-1284.	12.0	143
470	Advanced fully coupled thermoâ€mechanical plate elements for multilayered structures subjected to mechanical and thermal loading. International Journal for Numerical Methods in Engineering, 2011, 85, 896-919.	2.8	12
471	Radial basis functions collocation and a unified formulation for bending, vibration and buckling analysis of laminated plates, according to a variation of Murakami's zig-zag theory. European Journal of Mechanics, A/Solids, 2011, 30, 559-570.	3.7	41
472	Effects of thickness stretching in functionally graded plates and shells. Composites Part B: Engineering, 2011, 42, 123-133.	12.0	369
473	Hierarchical modelling of doubly curved laminated composite shells under distributed and localised loadings. Composites Part B: Engineering, 2011, 42, 682-691.	12.0	45
474	Variable kinematic beam elements coupled via Arlequin method. Composite Structures, 2011, 93, 697-708.	5.8	46
475	Assessments of refined theories for buckling analysis of laminated plates. Composite Structures, 2011, 93, 456-464.	5.8	35
476	Accuracy of refined finite elements for laminated plate analysis. Composite Structures, 2011, 93, 1311-1327.	5.8	87
477	Radial basis functions–finite differences collocation and a Unified Formulation for bending, vibration and buckling analysis of laminated plates, according to Murakami's zig-zag theory. Composite Structures, 2011, 93, 1613-1620.	5.8	104
478	Multi-scale modelling of sandwich structures using hierarchical kinematics. Composite Structures, 2011, 93, 2375-2383.	5.8	31
479	Analysis of thick isotropic and cross-ply laminated plates by radial basis functions and a Unified Formulation. Journal of Sound and Vibration, 2011, 330, 771-787.	3.9	58
480	THERMOMECHANICAL EFFECT IN VIBRATION ANALYSIS OF ONE-LAYERED AND TWO-LAYERED PLATES. International Journal of Applied Mechanics, 2011, 03, 161-185.	2.2	31
481	INFLUENCE OF IN-PLANE AXIAL AND SHEAR LOADING ON THE VIBRATION OF METALLIC PLATES. International Journal of Applied Mechanics, 2011, 03, 447-467.	2.2	4
482	ANALYSIS OF THIN-WALLED BEAMS VIA A ONE-DIMENSIONAL UNIFIED FORMULATION THROUGH A NAVIER-TYPE SOLUTION. International Journal of Applied Mechanics, 2011, 03, 407-434.	2.2	40
483	Evaluation of various theories of the thickness and curvature approximations for free vibrational analysis of cylindrical and spherical shells. International Journal of Vehicle Noise and Vibration, 2011, 7, 16.	0.1	9
484	Vibration Analysis of Anisotropic Simply Supported Plates by Using Variable Kinematic and Rayleigh-Ritz Method. Journal of Vibration and Acoustics, Transactions of the ASME, 2011, 133, .	1.6	37
485	Use of Functionally Graded Material Layers in a Two-Layered Pressure Vessel. Journal of Pressure Vessel Journal of Pressure Vessel Technology, Transactions of the ASME, 2011, 133, .	0.6	16
486	Modeling and Analysis of Functionally Graded Beams, Plates and Shells: Part II. Mechanics of Advanced Materials and Structures, 2011, 18, 1-2.	2.6	10

#	Article	IF	CITATIONS
487	Design, Modeling and Experiments of Adaptive Structures and Smart Systems III. Mechanics of Advanced Materials and Structures, 2011, 18, 467-468.	2.6	1
488	A Best Theory Diagram for Metallic and Laminated Shells. Advanced Structured Materials, 2011, , 681-698.	0.5	3
489	Advanced mixed theories for bending analysis of functionally graded plates. Computers and Structures, 2010, 88, 1474-1483.	4.4	98
490	Refined beam elements with arbitrary cross-section geometries. Computers and Structures, 2010, 88, 283-293.	4.4	218
491	Multilayered plate elements for the analysis of multifield problems. Finite Elements in Analysis and Design, 2010, 46, 732-742.	3.2	44
492	Multi-coating inhomogeneities approach for the effective thermo-electro-elastic properties of piezoelectric composite materials. Composite Structures, 2010, 92, 964-972.	5.8	49
493	MITC technique extended to variable kinematic multilayered plate elements. Composite Structures, 2010, 92, 1888-1895.	5.8	65
494	Coupled thermo-mechanical analysis of one-layered and multilayered plates. Composite Structures, 2010, 92, 1793-1812.	5.8	56
495	Variable kinematic models applied to free-vibration analysis of functionally graded material shells. European Journal of Mechanics, A/Solids, 2010, 29, 1078-1087.	3.7	53
496	Flight Mechanics Analysis of a Motorized Trike with Composite Wing. Journal of Aerospace Engineering, 2010, 23, 251-264.	1.4	1
497	Mixed Elements for the Analysis of Anisotropic Multilayered Piezoelectric Plates. Journal of Intelligent Material Systems and Structures, 2010, 21, 701-717.	2.5	26
498	Hierarchic finite elements based on a unified formulation for the static analysis of shear actuated multilayered piezoelectric plates. Multidiscipline Modeling in Materials and Structures, 2010, 6, 45-77.	1.3	11
499	Analysis of FGM beams by means of a unified formulation. IOP Conference Series: Materials Science and Engineering, 2010, 10, 012073.	0.6	4
500	Refined and Advanced Models for Multilayered Plates and Shells Embedding Functionally Graded Material Layers. Mechanics of Advanced Materials and Structures, 2010, 17, 603-621.	2.6	55
501	A Comparison of Various Two-Dimensional Assumptions in Finite Element Analysis of Multilayered Plates. International Journal for Computational Methods in Engineering Science and Mechanics, 2010, 11, 313-327.	2.1	3
502	Analysis of FGM Beams by Means of Classical and Advanced Theories. Mechanics of Advanced Materials and Structures, 2010, 17, 622-635.	2.6	99
503	Importance of Higher Order Modes and Refined Theories in Free Vibration Analysis of Composite Plates. Journal of Applied Mechanics, Transactions ASME, 2010, 77, .	2.2	17
504	Guidelines and Recommendations to Construct Theories for Metallic and Composite Plates. AIAA Journal, 2010, 48, 2852-2866.	2.6	104

#	Article	IF	CITATIONS
505	Variable-Kinematics Approach for Linearized Buckling Analysis of Laminated Plates and Shells. AIAA Journal, 2010, 48, 1987-1996.	2.6	38
506	Layer-Wise Theories for the Analysis of Thermo-Mechanical Coupling of Layered Structures. , 2010, , .		0
507	A Beam Formulation with Shell Capabilities. , 2010, , .		3
508	An Improved Beam Formulation for Aeroelastic Applications. , 2010, , .		4
509	REFINED BEAM THEORIES BASED ON A UNIFIED FORMULATION. International Journal of Applied Mechanics, 2010, 02, 117-143.	2.2	249
510	Thermo-Mechanical Analysis Of Functionally Graded Shells. Journal of Thermal Stresses, 2010, 33, 942-963.	2.0	77
511	Modeling and Analysis of Functionally Graded Beams, Plates and Shells: Part I. Mechanics of Advanced Materials and Structures, 2010, 17, 585-585.	2.6	8
512	Free Vibration of Sandwich Plates and Shells by Using Zig-Zag Function. Shock and Vibration, 2009, 16, 495-503.	0.6	23
513	Improved Response of Unsymmetrically Laminated Sandwich Plates by Using Zig-zag Functions. Journal of Sandwich Structures and Materials, 2009, 11, 257-267.	3.5	31
514	Refined Multilayered Plate Elements for Coupled Magnetoâ€Electroâ€Elastic Analysis. Multidiscipline Modeling in Materials and Structures, 2009, 5, 119-138.	1.3	14
515	A Comparison of Various Kinematic Models for Sandwich Shell Panels with Soft Core. Journal of Composite Materials, 2009, 43, 2201-2221.	2.4	39
516	Exact, Hierarchical Solutions for Localized Loadings in Isotropic, Laminated, and Sandwich Shells. Journal of Pressure Vessel Technology, Transactions of the ASME, 2009, 131, .	0.6	29
517	Mixed Multilayered Plate Elements for Coupled Magnetoâ€Electroâ€Elastic Analysis. Multidiscipline Modeling in Materials and Structures, 2009, 5, 251-256.	1.3	26
518	Mixed piezoelectric plate elements with direct evaluation of transverse electric displacement. International Journal for Numerical Methods in Engineering, 2009, 80, 403-424.	2.8	28
519	Improved bending analysis of sandwich plates using a zig-zag function. Composite Structures, 2009, 89, 408-415.	5.8	79
520	Refined 2D Models for the Analysis of Functionally Graded Piezoelectric Plates. Journal of Intelligent Material Systems and Structures, 2009, 20, 1783-1797.	2.5	50
521	A Survey With Numerical Assessment of Classical and Refined Theories for the Analysis of Sandwich Plates. Applied Mechanics Reviews, 2009, 62, .	10.1	243
522	Hierarchical Evaluation of Failure Parameters in Composite Plates. AIAA Journal, 2009, 47, 692-702.	2.6	32

#	Article	IF	CITATIONS
523	Hierarchic Plate and Shell Theories with Direct Evaluation of Transverse Electric Displacement. , 2009, , .		2
524	A Refined Beam Theory with Only Displacement Variables and Deformable Cross-Section. , 2009, , .		2
525	Analysis of thickness locking in classical, refined and mixed multilayered plate theories. Composite Structures, 2008, 82, 549-562.	5.8	208
526	Analysis of thickness locking in classical, refined and mixed theories for layered shells. Composite Structures, 2008, 85, 83-90.	5.8	117
527	Hierarchical models for failure analysis of plates bent by distributed and localized transverse loadings. Journal of Zhejiang University: Science A, 2008, 9, 600-613.	2.4	30
528	Variable Kinematic Model for the Analysis of Functionally Graded Material plates. AIAA Journal, 2008, 46, 194-203.	2.6	221
529	A Comphrensive FE Model for the Analysis of Multilayered Structures Subjected to Multifiled Loadings. , 2008, , .		1
530	Best on Plate/Shell Theories for Laminated Structures Analysis. , 2008, , .		2
531	Variational Statements and Computational Models for MultiField Problems and Multilayered Structures. Mechanics of Advanced Materials and Structures, 2008, 15, 182-198.	2.6	61
532	Thermo-Mechanical Bending of Functionally Graded Plates. Journal of Thermal Stresses, 2008, 31, 286-308.	2.0	119
533	Finite deformation higher-order shell models and rigid-body motions. International Journal of Solids and Structures, 2008, 45, 3153-3172.	2.7	60
534	Preface: Design, Modelling and Experiments of Adaptive Structures and Smart Systems. Mechanics of Advanced Materials and Structures, 2008, 15, 165-166.	2.6	0
535	Thermal Stress Analysis by Refined Multilayered Composite Shell Theories. Journal of Thermal Stresses, 2008, 32, 165-186.	2.0	42
536	Mixed Finite Elements for Thermoelastic Analysis of Multilayered Anisotropic Plates. Journal of Thermal Stresses, 2007, 30, 165-194.	2.0	29
537	Reissner Mixed Theorem Applied to Static Analysis of Piezoelectric Shellsâ€. Journal of Intelligent Material Systems and Structures, 2007, 18, 1083-1107.	2.5	20
538	Piezoelectric shell theories with <i>a priori</i> continuous transverse electromechanical variables. Journal of Mechanics of Materials and Structures, 2007, 2, 377-398.	0.6	27
539	Hierarchic Finite Elements Based on a Unified Formulation for the Static Analysis of Shear Actuated Multilayered Piezoelectric Plates. , 2007, , .		0
540	Mixed piezoelectric plate elements with continuous transverse electric displacements. Journal of Mechanics of Materials and Structures, 2007, 2, 421-438.	0.6	17

#	Article	IF	CITATIONS
541	Classical and mixed finite elements for static and dynamic analysis of piezoelectric plates. International Journal for Numerical Methods in Engineering, 2007, 70, 1135-1181.	2.8	84
542	On the use of transverse shear stress homogeneous and non-homogeneous conditions in third-order orthotropic plate theory. Composite Structures, 2007, 77, 341-352.	5.8	15
543	Hierarchical closed form solutions for plates bent by localized transverse loadings. Journal of Zhejiang University: Science A, 2007, 8, 1026-1037.	2.4	30
544	Simulation of shock wave impact due to explosion on a flying flexible aircraft. Combustion, Explosion and Shock Waves, 2007, 43, 732-740.	0.8	2
545	Hierarchic Multilayered Plate Elements for Coupled Multifield Problems of Piezoelectric Adaptive Structures: Formulation andÂNumerical Assessment. Archives of Computational Methods in Engineering, 2007, 14, 383-430.	10.2	89
546	Hierarchical Finite Element Analysis of Multilayered Plates Subjected to Mechanical, Thermal and Electrical Loadings. , 2006, , 725.		0
547	A unified formulation for finite element analysis of piezoelectric adaptive plates. Computers and Structures, 2006, 84, 1494-1505.	4.4	91
548	Closed-form solutions for the free-vibration problem of multilayered piezoelectric shells. Computers and Structures, 2006, 84, 1506-1518.	4.4	43
549	Computational Models for Multilayered Structures and Composite Structures. Computers and Structures, 2006, 84, 1173-1176.	4.4	1
550	A unified formulation to assess multilayered theories for piezoelectric plates. Computers and Structures, 2005, 83, 1217-1235.	4.4	98
551	Bending of composites and sandwich plates subjected to localized lateral loadings: a comparison of various theories. Composite Structures, 2005, 68, 185-202.	5.8	76
552	A unified formulation to assess theories of multilayered plates for various bending problems. Composite Structures, 2005, 69, 271-293.	5.8	181
553	Unified Formulation for Finite Element Thermoelastic Analysis of Multilayered Anisotropic Composite Plates. Journal of Thermal Stresses, 2005, 28, 1031-1065.	2.0	33
554	Transverse Normal Strain Effect on Thermal Stress Analysis of Homogeneous and Layered Plates. AIAA Journal, 2005, 43, 2232-2242.	2.6	84
555	Comparison of Various Structural Solutions for a Reduced-Sized Technological Demonstrator. , 2005, , .		1
556	Concepts for Very Low Cost Technology Demonstrators for Hypersonic Vehicles (VeLCHyD). , 2005, , .		1
557	Assessment of Theories for Free Vibration Analysis of Homogeneous and Multilayered Plates. Shock and Vibration, 2004, 11, 261-270.	0.6	22
558	On the use of the Murakami's zig-zag function in the modeling of layered plates and shells. Computers and Structures, 2004, 82, 541-554.	4.4	246

#	Article	IF	CITATIONS
559	CLOSED-FORM SOLUTIONS TO ASSESS MULTILAYERED-PLATE THEORIES FOR VARIOUS THERMAL STRESS PROBLEMS. Journal of Thermal Stresses, 2004, 27, 1001-1031.	2.0	45
560	Theories and Finite Elements for Multilayered Plates and Shells:A Unified compact formulation with numerical assessment and benchmarking. Archives of Computational Methods in Engineering, 2003, 10, 215-296.	10.2	878
561	Two Benchmarks to Assess Two-Dimensional Theories of Sandwich, Composite Plates. AIAA Journal, 2003, 41, 1356-1362.	2.6	46
562	A two-level optimization feature for the design of aerospace structures. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2003, 217, 189-206.	1.3	4
563	Historical review of Zig-Zag theories for multilayered plates and shells. Applied Mechanics Reviews, 2003, 56, 287-308.	10.1	929
564	Temperature Profile Influence on Layered Plates Response Considering Classical and Advanced Theories. AIAA Journal, 2002, 40, 1885-1896.	2.6	100
565	Assessment of Plate Elements on Bending and Vibrations of Composite Structures. Mechanics of Advanced Materials and Structures, 2002, 9, 333-357.	2.6	27
566	Classical and advanced multilayered plate elements based upon PVD and RMVT. Part 1: Derivation of finite element matrices. International Journal for Numerical Methods in Engineering, 2002, 55, 191-231.	2.8	198
567	Classical and advanced multilayered plate elements based upon PVD and RMVT. Part 2: Numerical implementations. International Journal for Numerical Methods in Engineering, 2002, 55, 253-291.	2.8	166
568	Theories and finite elements for multilayered, anisotropic, composite plates and shells. Archives of Computational Methods in Engineering, 2002, 9, 87-140.	10.2	800
569	Temperature profile influence on layered plates response considering classical and advanced theories. AIAA Journal, 2002, 40, 1885-1896.	2.6	3
570	Developments, ideas, and evaluations based upon Reissner's Mixed Variational Theorem in the modeling of multilayered plates and shells. Applied Mechanics Reviews, 2001, 54, 301-329.	10.1	414
571	Multilayered shell finite element with interlaminar continuous shear stresses: a refinement of the Reissner-Mindlin formulation. International Journal for Numerical Methods in Engineering, 2000, 48, 843-874.	2.8	47
572	An assessment of mixed and classical theories on global and local response of multilayered orthotropic plates. Composite Structures, 2000, 50, 183-198.	5.8	159
573	A priori vs. a posteriori evaluation of transverse stresses in multilayered orthotropic plates. Composite Structures, 2000, 48, 245-260.	5.8	99
574	A family of shear-deformable shell finite elements for composite structures. Computers and Structures, 2000, 76, 287-297.	4.4	25
575	AN ASSESSMENT OF MIXED AND CLASSICAL THEORIES FOR THE THERMAL STRESS ANALYSIS OF ORTHOTROPIC MULTILAYERED PLATES. Journal of Thermal Stresses, 2000, 23, 797-831.	2.0	143
576	Single- vs Multilayer Plate Modelings on the Basis of Reissner's Mixed Theorem. AIAA Journal, 2000, 38, 342-352.	2.6	67

#	Article	IF	CITATIONS
577	Single- vs multilayer plate modelings on the basis of Reissner's mixed theorem. AIAA Journal, 2000, 38, 342-352.	2.6	4
578	Transverse Normal Stress Effects in Multilayered Plates. Journal of Applied Mechanics, Transactions ASME, 1999, 66, 1004-1012.	2.2	92
579	A STUDY OF TRANSVERSE NORMAL STRESS EFFECT ON VIBRATION OF MULTILAYERED PLATES AND SHELLS. Journal of Sound and Vibration, 1999, 225, 803-829.	3.9	185
580	A Reissner's Mixed Variational Theorem Applied to Vibration Analysis of Multilayered Shell. Journal of Applied Mechanics, Transactions ASME, 1999, 66, 69-78.	2.2	53
581	Multilayered Shell Theories Accounting for Layerwise Mixed Description, Part 1: Governing Equations. AIAA Journal, 1999, 37, 1107-1116.	2.6	161
582	Multilayered Shell Theories Accounting for Layerwise Mixed Description, Part 2: Numerical Evaluations. AIAA Journal, 1999, 37, 1117-1124.	2.6	116
583	Multilayered shell theories accounting for layerwise mixed description. I - Governing equations. AIAA Journal, 1999, 37, 1107-1116.	2.6	19
584	Multilayered shell theories accounting for layerwise mixed description. II - Numerical evaluations. AIAA Journal, 1999, 37, 1117-1124.	2.6	18
585	An investigation of non-linear dynamics of multilayered plates accounting for COz requirements. Computers and Structures, 1998, 69, 473-486.	4.4	14
586	Mixed layer-wise models for multilayered plates analysis. Composite Structures, 1998, 43, 57-70.	5.8	153
587	A refined multilayered finite-element model applied to linear and non-linear analysis of sandwich plates. Composites Science and Technology, 1998, 58, 1553-1569.	7.8	47
588	Evaluation of Layerwise Mixed Theories for Laminated Plates Analysis. AIAA Journal, 1998, 36, 830-839.	2.6	285
589	Layer-Wise Mixed Models for Accurate Vibrations Analysis of Multilayered Plates. Journal of Applied Mechanics, Transactions ASME, 1998, 65, 820-828.	2.2	122
590	A Refined Multilayered Fem Model Applied to Sandwich Structures. , 1998, , 61-69.		1
591	Evaluation of layerwise mixed theories for laminated plates analysis. AIAA Journal, 1998, 36, 830-839.	2.6	21
592	An Improved Reissner-Mindlin-Type Model for the Electromechanical Analysis of Multilayered Plates Including Piezo-Layers. Journal of Intelligent Material Systems and Structures, 1997, 8, 232-248.	2.5	80
593	ZIGZAG AND INTERLAMINAR EQUILIBRIA EFFECTS IN LARGE-DEFLECTION AND POSTBUCKLING ANALYSIS OF MULTILAYERED PLATES. Mechanics of Advanced Materials and Structures, 1997, 4, 69-94.	2.6	78
594	An evaluation of geometrical nonlinear effects of thin and moderately thick multilayered composite shells. Composite Structures, 1997, 40, 11-24.	5.8	43

0

#	Article	IF	CITATIONS
595	CZ° requirements—models for the two dimensional analysis of multilayered structures. Composite Structures, 1997, 37, 373-383.	5.8	137
596	CO REISSNER-MINDLIN MULTILAYERED PLATE ELEMENTS INCLUDING ZIG-ZAG AND INTERLAMINAR STRESS CONTINUITY. International Journal for Numerical Methods in Engineering, 1996, 39, 1797-1820.	2.8	187
597	Effects of boundary conditions on postbuckling of compressed, symmetrically laminated thick plates. AIAA Journal, 1995, 33, 1543-1546.	2.6	18
598	Reply by the Author to C. T. Sun. AIAA Journal, 1994, 32, 2135-2136.	2.6	2
599	A study on arc-length-type methods and their operation failures illustrated by a simple model. Computers and Structures, 1994, 50, 217-229.	4.4	83
600	Large deflections and stability FEM analysis of shear deformable compressed anisotropic flat panels. Composite Structures, 1994, 29, 433-444.	5.8	23
601	Nonlinear response of asymmetrically laminated plates in cylindricalbending. AIAA Journal, 1993, 31, 1353-1357.	2.6	22
602	Elastodynamic Behavior of Relatively Thick, Symmetrically Laminated, Anisotropic Circular Cylindrical Shells. Journal of Applied Mechanics, Transactions ASME, 1992, 59, 222-224.	2.2	31
603	The effects of shear deformation and curvature on buckling and vibrations of cross-ply laminated composite shells. Journal of Sound and Vibration, 1991, 150, 405-433.	3.9	60
604	Static buckling of moderately thick, anisotropic, laminated and sandwich cylindrical shell panels. AIAA Journal, 1990, 28, 1782-1793.	2.6	49
605	Effective Properties of Electro-Elastic Composites with Multi-Coating Inhomogeneities. Advanced Materials Research, 0, 93-94, 190-193.	0.3	0
606	Shell Finite Elements for the Analysis of Multifield Problems in Multilayered Composite Structures. Applied Mechanics and Materials, 0, 828, 215-236.	0.2	7
607	Geometrically nonlinear refined shell theories by Carrera Unified Formulation. Mechanics of Advanced Materials and Structures, 0, , 1-21.	2.6	56
608	A hygrothermal stress finite element analysis of laminated beam structures through hierarchical one-dimensional modeling. Mechanics of Advanced Materials and Structures, 0, , 1-15.	2.6	6
609	A Modern and Compact Way to Formulate Classical and Advanced Beam Theories. Computational Science, Engineering and Technology Series, 0, , 75-112.	0.2	16
610	A Component-Wise Approach in Structural Analysis. Computational Science, Engineering and Technology Series, 0, , 75-115.	0.2	9
611	Buckling of Beams by Refined Theories and Dynamic Stiffness Method. , 0, , .		0

Refined Beam Models for Static and Dynamic Analysis of Wings and Rotor Blades. , 0, , .

#	Article	IF	CITATIONS
613	Free vibration Analysis of Laminated Plates using Wavelet Collocation and a Unified Formulation. , 0, , . \cdot		0
614	Buckling of Laminated and Functionally Graded Plates using Radial Basis Functions. , 0, , .		0
615	Thermo-Mechanical Analysis of Isotropic and Orthotropic Beams using a Unified Formulation. , 0, , .		0
616	Stress and Failure Onset Analysis of Thin Composite Deployables by Global/Local Approach. AIAA Journal, 0, , 1-13.	2.6	0