Hind Abdo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5703145/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Specialized cutaneous Schwann cells initiate pain sensation. Science, 2019, 365, 695-699.	6.0	231
2	Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage. ELife, 2018, 7, .	2.8	28
3	Termination of cell-type specification gene programs by miR-183 cluster determines the population sizes of low threshold mechanosensitive neurons. Development (Cambridge), 2018, 145, .	1.2	8
4	miR-183 cluster scales mechanical pain sensitivity by regulating basal and neuropathic pain genes. Science, 2017, 356, 1168-1171.	6.0	124
5	Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla. Science, 2017, 357, .	6.0	251
6	Visceral motor neuron diversity delineates a cellular basis for nipple- and pilo-erection muscle control. Nature Neuroscience, 2016, 19, 1331-1340.	7.1	91
7	Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nature Neuroscience, 2015, 18, 145-153.	7.1	1,710
8	Enteric glia and neuroprotection: basic and clinical aspects. American Journal of Physiology - Renal Physiology, 2012, 303, G887-G893.	1.6	54
9	The omegaâ€6 fatty acid derivative 15â€deoxyâ€î" ^{12,14} â€prostaglandin J2 is involved in neuroprotection by enteric glial cells against oxidative stress. Journal of Physiology, 2012, 590, 2739-2750.	1.3	46
10	Dependence on the transcription factor Shox2 for specification of sensory neurons conveying discriminative touch. European Journal of Neuroscience, 2011, 34, 1529-1541.	1.2	33
11	The transcription factor Cux2 marks development of an A-delta sublineage of TrkA sensory neurons. Developmental Biology, 2011, 360, 77-86.	0.9	40
12	Enteric glial cells protect neurons from oxidative stress in part <i>via</i> reduced glutathione. FASEB Journal, 2010, 24, 1082-1094.	0.2	91
13	Enteric glia modulate epithelial cell proliferation and differentiation through 15â€deoxyâ€Î" ^{12,14} â€prostaglandin J2. Journal of Physiology, 2010, 588, 2533-2544. 	1.3	81
14	Neuroplasticity and neuroprotection in enteric neurons: Role of epithelial cells. Biochemical and Biophysical Research Communications, 2009, 382, 577-582.	1.0	21