List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5702953/publications.pdf Version: 2024-02-01

<u>Εμά"νια Μαρτά-</u>

#	Article	lF	CITATIONS
1	Control of Nitrogen Export from Watersheds by Headwater Streams. Science, 2001, 292, 86-90.	12.6	1,209
2	Biophysical controls on organic carbon fluxes in fluvial networks. Nature Geoscience, 2008, 1, 95-100.	12.9	1,102
3	Inter-biome comparison of factors controlling stream metabolism. Freshwater Biology, 2001, 46, 1503-1517.	2.4	360
4	Twenty-six key research questions in urban stream ecology: an assessment of the state of the science. Journal of the North American Benthological Society, 2009, 28, 1080-1098.	3.1	312
5	Material Spiraling in Stream Corridors: A Telescoping Ecosystem Model. Ecosystems, 1998, 1, 19-34.	3.4	259
6	Differential photoinhibition of bacterial and archaeal ammonia oxidation. FEMS Microbiology Letters, 2012, 327, 41-46.	1.8	245
7	Factors affecting ammonium uptake in streams - an inter-biome perspective. Freshwater Biology, 2003, 48, 1329-1352.	2.4	233
8	N uptake as a function of concentration in streams. Journal of the North American Benthological Society, 2002, 21, 206-220.	3.1	222
9	Can uptake length in streams be determined by nutrient addition experiments? Results from an interbiome comparison study. Journal of the North American Benthological Society, 2002, 21, 544-560.	3.1	186
10	Carbon and nitrogen transfer from a desert stream to riparian predators. Oecologia, 2003, 134, 238-250.	2.0	185
11	Nutrient Retention Efficiency in Streams Receiving Inputs from Wastewater Treatment Plants. Journal of Environmental Quality, 2004, 33, 285-293.	2.0	176
12	Ecohydrological interfaces as hot spots of ecosystem processes. Water Resources Research, 2017, 53, 6359-6376.	4.2	155
13	High Variability in Temporal and Spatial Nutrient Retention in Mediterranean Streams. Ecology, 1996, 77, 854-869.	3.2	151
14	Effects of riparian vegetation removal on nutrient retention in a Mediterranean stream. Journal of the North American Benthological Society, 2000, 19, 609-620.	3.1	136
15	Effects of nutrients and light on periphyton biomass and nitrogen uptake in Mediterranean streams with contrasting land uses. Freshwater Biology, 2007, 52, 891-906.	2.4	131
16	Pre- and Post-Flood Retention Efficiency of Nitrogen in a Sonoran Desert Stream. Journal of the North American Benthological Society, 1997, 16, 805-819.	3.1	126
17	Resource subsidies between stream and terrestrial ecosystems under global change. Global Change Biology, 2016, 22, 2489-2504.	9.5	119
18	Carbon and nitrogen stoichiometry and nitrogen cycling rates in streams. Oecologia, 2004, 140, 458-467.	2.0	108

#	Article	IF	CITATIONS
19	Net changes in nutrient concentrations below a point source input in two streams draining catchments with contrasting land uses. Science of the Total Environment, 2005, 347, 217-229.	8.0	93
20	Development of a "smart―tracer for the assessment of microbiological activity and sedimentâ€water interaction in natural waters: The resazurinâ€resorufin system. Water Resources Research, 2008, 44, .	4.2	91
21	Resazurin as a "smart―tracer for quantifying metabolically active transient storage in stream ecosystems. Journal of Geophysical Research, 2009, 114, .	3.3	89
22	Contraction, fragmentation and expansion dynamics determine nutrient availability in a Mediterranean forest stream. Aquatic Sciences, 2011, 73, 485-497.	1.5	89
23	Hydrological extremes modulate nutrient dynamics in mediterranean climate streams across different spatial scales. Hydrobiologia, 2013, 719, 31-42.	2.0	84
24	Hierarchy, spatial configuration, and nutrient cycling in a desert stream. Austral Ecology, 1998, 23, 41-52.	1.5	81
25	Influence of land use on stream ecosystem function in a Mediterranean catchment. Freshwater Biology, 2008, 53, 2600-2612.	2.4	80
26	Inter-annual, Annual, and Seasonal Variation of P and N Retention in a Perennial and an Intermittent Stream. Ecosystems, 2008, 11, 670-687.	3.4	74
27	Sources of Nitrogen to the Riparian Zone of a Desert Stream: Implications for Riparian Vegetation and Nitrogen Retention. Ecosystems, 2002, 5, 68-79.	3.4	73
28	Nutrient enrichment effects on biofilm metabolism in a Mediterranean stream. Freshwater Biology, 1995, 33, 373-383.	2.4	69
29	Riparian Corridors: A New Conceptual Framework for Assessing Nitrogen Buffering Across Biomes. Frontiers in Environmental Science, 2018, 6, .	3.3	62
30	Quantification of metabolically active transient storage (MATS) in two reaches with contrasting transient storage and ecosystem respiration. Journal of Geophysical Research, 2011, 116, .	3.3	61
31	Partitioning assimilatory nitrogen uptake in streams: an analysis of stable isotope tracer additions across continents. Ecological Monographs, 2018, 88, 120-138.	5.4	60
32	A conceptual framework for understanding the biogeochemistry of dry riverbeds through the lens of soil science. Earth-Science Reviews, 2019, 188, 441-453.	9.1	54
33	Nutrient and Organic Matter Dynamics in Intermittent Rivers and Ephemeral Streams. , 2017, , 135-160.		52
34	Hydrologic exchange and N uptake by riparian vegetation in an arid-land stream. Journal of the North American Benthological Society, 2005, 24, 19-28.	3.1	47
35	Nitrate retention and removal in Mediterranean streams bordered by contrasting land uses: a ¹⁵ N tracer study. Biogeosciences, 2009, 6, 181-196.	3.3	47
36	Nitrogen processing and the role of epilithic biofilms downstream of a wastewater treatment plant. Freshwater Science, 2012, 31, 1057-1069.	1.8	46

#	Article	IF	CITATIONS
37	Hydrological transitions drive dissolved organic matter quantity and composition in a temporary Mediterranean stream. Biogeochemistry, 2015, 123, 429-446.	3.5	46
38	Decrypting stableâ€isotope (δ ¹³ C and δ ¹⁵ N) variability in aquatic plants. Freshwater Biology, 2017, 62, 1807-1818.	2.4	46
39	Stream carbon and nitrogen supplements during leaf litter decomposition: contrasting patterns for two foundation species. Oecologia, 2014, 176, 1111-1121.	2.0	45
40	You are not always what we think you eat: selective assimilation across multiple wholeâ€stream isotopic tracer studies. Ecology, 2014, 95, 2757-2767.	3.2	44
41	Wastewater Treatment Plant Effluents Change Abundance and Composition of Ammonia-Oxidizing Microorganisms in Mediterranean Urban Stream Biofilms. Microbial Ecology, 2015, 69, 66-74.	2.8	44
42	Contribution of Hydrologic Opportunity and Biogeochemical Reactivity to the Variability of Nutrient Retention in River Networks. Global Biogeochemical Cycles, 2018, 32, 376-388.	4.9	44
43	Combined effects of leaf litter inputs and a flood on nutrient retention in a Mediterranean mountain stream during fall. Limnology and Oceanography, 2008, 53, 631-641.	3.1	43
44	Variability in δ ¹⁵ N natural abundance of basal resources in fluvial ecosystems: a meta-analysis. Freshwater Science, 2012, 31, 1003-1015.	1.8	43
45	Colonization of freshwater biofilms by nitrifying bacteria from activated sludge. FEMS Microbiology Ecology, 2013, 85, 104-115.	2.7	41
46	Riparian and in-stream controls on nutrient concentrations and fluxes in a headwater forested stream. Biogeosciences, 2015, 12, 1941-1954.	3.3	41
47	Nutrient Retention Efficiency in Streams Receiving Inputs from Wastewater Treatment Plants. Journal of Environmental Quality, 2004, 33, 285.	2.0	41
48	Evaluation of the environmental implications to include structural changes in a wastewater treatment plant. Journal of Chemical Technology and Biotechnology, 2002, 77, 1206-1211.	3.2	38
49	Recovery of the macroinvertebrate community below a wastewater treatment plant input in a Mediterranean stream. Hydrobiologia, 2005, 545, 289-302.	2.0	37
50	Influence of nitrate and ammonium availability on uptake kinetics of stream biofilms. Freshwater Science, 2013, 32, 1155-1167.	1.8	36
51	Influence of transient storage on stream nutrient uptake based on substrata manipulation. Aquatic Sciences, 2011, 73, 365-376.	1.5	35
52	Riverine transport of terrestrial organic matter to the North Catalan margin, NW Mediterranean Sea. Progress in Oceanography, 2013, 118, 71-80.	3.2	35
53	Stream drying drives microbial ammonia oxidation and firstâ€flush nitrate export. Ecology, 2016, 97, 2192-2198.	3.2	35
54	Green light: gross primary production influences seasonal stream NÂexport by controlling fineâ€scale N dynamics. Ecology, 2016, 97, 133-144.	3.2	35

EugÃ^{..}nia MartÃ-

#	Article	IF	CITATIONS
55	Variability in surfaceâ€subsurface hydrologic interactions and implications for nutrient retention in an aridâ€land stream. Journal of Geophysical Research, 2007, 112, .	3.3	34
56	Flood Frequency and Streamâ \in "Riparian Linkages in Arid Lands. , 2000, , 111-136.		33
57	Understanding pathways of dissimilatory and assimilatory dissolved inorganic nitrogen uptake in streams. Limnology and Oceanography, 2017, 62, 1166-1183.	3.1	33
58	Science and Management of Intermittent Rivers and Ephemeral Streams (SMIRES). Research Ideas and Outcomes, 0, 3, e21774.	1.0	33
59	Biofilm recovery in a wastewater treatment plantâ€influenced stream and spatial segregation of ammoniaâ€oxidizing microbial populations. Limnology and Oceanography, 2011, 56, 1054-1064.	3.1	32
60	Inâ€stream net uptake regulates inorganic nitrogen export from catchments under base flow conditions. Journal of Geophysical Research, 2012, 117, .	3.3	32
61	A round-trip ticket: the importance of release processes for in-stream nutrient spiraling. Freshwater Science, 2015, 34, 20-30.	1.8	28
62	Ecosystem respiration increases with biofilm growth and bed forms: Flume measurements with resazurin. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 2220-2230.	3.0	27
63	Smallâ€scale heterogeneity of microbial N uptake in streams and its implications at the ecosystem level. Ecology, 2016, 97, 1329-1344.	3.2	27
64	Linking in-stream nutrient uptake to hydrologic retention in two headwater streams. Freshwater Science, 2016, 35, 1176-1188.	1.8	27
65	Organizational Principles of Hyporheic Exchange Flow and Biogeochemical Cycling in River Networks Across Scales. Water Resources Research, 2022, 58, .	4.2	26
66	Point-source effects on N and P uptake in a forested and an agricultural Mediterranean streams. Science of the Total Environment, 2011, 409, 957-967.	8.0	25
67	Technical Note: A comparison of two empirical approaches to estimate in-stream net nutrient uptake. Biogeosciences, 2011, 8, 875-882.	3.3	24
68	Temporal Variability of Nitrogen Stable Isotopes in Primary Uptake Compartments in Four Streams Differing in Human Impacts. Environmental Science & Technology, 2014, 48, 6612-6619.	10.0	24
69	Decoupling of dissolved organic matter patterns between stream and riparian groundwater in a headwater forested catchment. Hydrology and Earth System Sciences, 2018, 22, 1897-1910.	4.9	24
70	Supply, Demand, and In-Stream Retention of Dissolved Organic Carbon and Nitrate During Storms in Mediterranean Forested Headwater Streams. Frontiers in Environmental Science, 2019, 7, .	3.3	24
71	Spatial and temporal variation in river corridor exchange across a 5th-order mountain stream network. Hydrology and Earth System Sciences, 2019, 23, 5199-5225.	4.9	23
72	Effects of Wastewater Treatment Plants on Stream Nutrient Dynamics Under Water Scarcity Conditions. Handbook of Environmental Chemistry, 2009, , 173-195.	0.4	22

#	Article	IF	CITATIONS
73	Temporal variation of hydrological exchange and hyporheic biogeochemistry in a headwater stream during autumn. Journal of the North American Benthological Society, 2011, 30, 635-652.	3.1	22
74	Impacts of water level on metabolism and transient storage in vegetated lowland rivers: Insights from a mesocosm study. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 628-644.	3.0	22
75	The influence of riparian evapotranspiration on stream hydrology and nitrogen retention in a subhumid Mediterranean catchment. Hydrology and Earth System Sciences, 2016, 20, 3831-3842.	4.9	21
76	Nighttime and daytime respiration in a headwater stream. Ecohydrology, 2016, 9, 93-100.	2.4	21
77	Photoinhibition on natural ammonia oxidizers biofilm populations and implications for nitrogen uptake in stream biofilms. Limnology and Oceanography, 2017, 62, 364-375.	3.1	21
78	Spatial heterogeneity in water velocity drives leaf litter dynamics in streams. Freshwater Biology, 2020, 65, 435-445.	2.4	21
79	Biofilm growth and nitrogen uptake responses to increases in nitrate and ammonium availability. Aquatic Sciences, 2015, 77, 695-707.	1.5	20
80	Variation in stream C, N and P uptake along an altitudinal gradient: a space-for-time analogue to assess potential impacts of climate change. Hydrology Research, 2009, 40, 123-137.	2.7	19
81	Leachates from Helophyte Leaf-Litter Enhance Nitrogen Removal from Wastewater Treatment Plant Effluents. Environmental Science & Technology, 2019, 53, 7613-7620.	10.0	19
82	Responses of microbially driven leaf litter decomposition to stream nutrients depend on litter quality. Hydrobiologia, 2018, 806, 333-346.	2.0	18
83	Measuring in-stream retention of copper by means of constant-rate additions. Science of the Total Environment, 2009, 407, 3847-3854.	8.0	17
84	Contrasts among macrophyte riparian species in their use of stream water nitrate and ammonium: insights from 15N natural abundance. Aquatic Sciences, 2014, 76, 203-215.	1.5	17
85	Enhancement of carbon and nitrogen removal by helophytes along subsurface water flowpaths receiving treated wastewater. Science of the Total Environment, 2017, 599-600, 1667-1676.	8.0	16
86	Wastewater treatment plant effluent inputs induce large biogeochemical changes during low flows in an intermittent stream but small changes in day-night patterns. Science of the Total Environment, 2020, 714, 136733.	8.0	16
87	Macroinvertebrate community traits and nitrate removal in stream sediments. Freshwater Biology, 2017, 62, 929-944.	2.4	15
88	Low flow controls on stream thermal dynamics. Limnologica, 2018, 68, 157-167.	1.5	15
89	Modelling the seasonal impacts of a wastewater treatment plant on water quality in a Mediterranean stream using microbial indicators. Journal of Environmental Management, 2020, 261, 110220.	7.8	15
90	Nitrogen Stable Isotopes in Primary Uptake Compartments Across Streams Differing in Nutrient Availability. Environmental Science & Technology, 2013, 47, 130830132045000.	10.0	14

Eugènia MartÃ-

#	Article	IF	CITATIONS
91	Restoration of wood loading has mixed effects on water, nutrient, and leaf retention in Basque mountain streams. Freshwater Science, 2016, 35, 41-54.	1.8	14
92	Solute Transport and Transformation in an Intermittent, Headwater Mountain Stream with Diurnal Discharge Fluctuations. Water (Switzerland), 2019, 11, 2208.	2.7	14
93	Co-located contemporaneous mapping of morphological, hydrological, chemical, and biological conditions in a 5th-order mountain stream network, Oregon, USA. Earth System Science Data, 2019, 11, 1567-1581.	9.9	14
94	Intrinsic and extrinsic drivers of autotrophic nitrogen cycling in stream ecosystems: Results from a translocation experiment. Limnology and Oceanography, 2014, 59, 1973-1986.	3.1	13
95	Drivers of nitrogen transfer in stream food webs across continents. Ecology, 2017, 98, 3044-3055.	3.2	13
96	Emergent Macrophyte Root Architecture Controls Subsurface Solute Transport. Water Resources Research, 2018, 54, 5958-5972.	4.2	13
97	Exploring the role of hydraulic conductivity on the contribution of the hyporheic zone to inâ€stream nitrogen uptake. Ecohydrology, 2019, 12, e2139.	2.4	12
98	Exploring the ecological status of human altered streams through Generative Topographic Mapping. Environmental Modelling and Software, 2007, 22, 1053-1065.	4.5	11
99	Nutrient uptake in a stream affected by hydropower plants: comparison between stream channels and diversion canals. Hydrobiologia, 2013, 712, 105-116.	2.0	10
100	The role of helophyte species on nitrogen and phosphorus retention from wastewater treatment plant effluents. Journal of Environmental Management, 2019, 252, 109585.	7.8	10
101	Interactions between microplastics and benthic biofilms in fluvial ecosystems: Knowledge gaps and future trends. Freshwater Science, 2022, 41, 442-458.	1.8	10
102	The influence of the invasive alien nitrogen-fixing Robinia pseudoacacia L. on soil nitrogen availability in a mixed Mediterranean riparian forest. European Journal of Forest Research, 2019, 138, 1083-1093.	2.5	8
103	Effect of Three Emergent Macrophyte Species on Nutrient Retention in Aquatic Environments under Excess Nutrient Loading. Environmental Science & Technology, 2020, 54, 15376-15384.	10.0	8
104	Residence Time in Hyporheic Bioactive Layers Explains Nitrate Uptake in Streams. Water Resources Research, 2021, 57, e2020WR027646.	4.2	8
105	Differences in ammonium oxidizer abundance and N uptake capacity between epilithic and epipsammic biofilms in an urban stream. Freshwater Science, 2018, 37, 13-22.	1.8	7
106	Diel variation of nutrient retention is associated with metabolism for ammonium but not phosphorus in a lowland stream. Freshwater Science, 2020, 39, 268-280.	1.8	7
107	Microbial uptake of nitrogen and carbon from the water column by litterâ€associated microbes differs among litter species. Limnology and Oceanography, 2020, 65, 1891-1902.	3.1	7
108	Floodplain Preconditioning of Leaf Litter Modulates the Subsidy of Terrestrial C and Nutrients in Fluvial Ecosystems. Ecosystems, 2021, 24, 137-152.	3.4	7

#	ARTICLE	IF	CITATIONS
109	Combined effects of hydrologic alteration and cyprinid fish in mediating biogeochemical processes in a Mediterranean stream. Science of the Total Environment, 2017, 601-602, 1217-1225.	8.0	6
110	Influence of Dissolved Organic Matter Sources on In-Stream Net Dissolved Organic Carbon Uptake in a Mediterranean Stream. Water (Switzerland), 2020, 12, 1722.	2.7	6
111	Integrating empirical and heuristic knowledge in a KBS to approach stream eutrophication. Ecological Modelling, 2009, 220, 2162-2172.	2.5	5
112	Uptake and trophic transfer of nitrogen and carbon in a temperate forested headwater stream. Aquatic Sciences, 2019, 81, 1.	1.5	5
113	Day–night ammonium oxidation in an urban stream: the influence of irradiance on ammonia oxidizers. Freshwater Science, 2017, 36, 272-283.	1.8	4
114	Helophyte impacts on the response of hyporheic invertebrate communities to inundation events in intermittent streams. Ecohydrology, 2017, 10, e1857.	2.4	4
115	Wastewater treatment plant effluent inputs influence the temporal variability of nutrient uptake in an intermittent stream. Urban Ecosystems, 2022, 25, 1313-1326.	2.4	4
116	Hydrological and chemical linkages between the active channel and the riparian zone in an arid land stream. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 2000, 27, 442-447.	0.1	3
117	The method controls the story - Sampling method impacts on the detection of pore-water nitrogen concentrations in streambeds. Science of the Total Environment, 2020, 709, 136075.	8.0	2
118	Nutrient availability modulates the effect of water abstraction on the metabolism of 2 lowland forested streams. Freshwater Science, 0, , .	1.8	2
119	Respiratory electron transport system (ETS) activity in Spanish reservoirs: relationships with nutrients and seston. Journal of Plankton Research, 1995, 17, 513-530.	1.8	1
120	Towards a holistic view of nutrient dynamics in fluvial ecosystems. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 2000, 27, 3111-3116.	0.1	1
121	Incorporating In-Stream Nutrient Uptake into River Management: Gipuzkoa Rivers (Basque Country,) Tj ETQq1 1	0.784314 3.2	rgBT /Overlo
122	Hydromorphologic Control of Streambed Fine Particle Standing Stocks Influences In-stream Aerobic Respiration. Frontiers in Water, 2021, 3, .	2.3	1
123	Stream Hydrology Controls the Longitudinal Bioreactive Footprint of Urban-Sourced Fine Particles. Environmental Science & Technology, 2022, 56, 9083-9091.	10.0	1
124	Relationships among macroinvertebrate community structure, bio/ecological trait profiles, and environmental descriptors in European human-altered streams. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 2009, 30, 1234-1238.	0.1	0
125	Chemical and optical properties of leachates from different riparian particulate organic matter sources influence instream microbial activity. Freshwater Science, 2020, 39, 812-823.	1.8	0
126	Consequences of an ecosystem state shift for nitrogen cycling in a desert stream. Limnology and Oceanography, 2022, 67, 1274-1286.	3.1	0