Lucianna Helene Santos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5702755/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rad5 HIRAN domain: Structural insights into its interaction with ssDNA through molecular modeling approaches. Journal of Biomolecular Structure and Dynamics, 2023, 41, 3062-3075.	3.5	0
2	pH and non-covalent ligand binding modulate Zika virus NS2B/NS3 protease binding site residues: Discoveries from MD and constant pH MD simulations. Journal of Biomolecular Structure and Dynamics, 2022, 40, 10359-10372.	3.5	3
3	Bacterial 2′-Deoxyguanosine Riboswitch Classes as Potential Targets for Antibiotics: A Structure and Dynamics Study. International Journal of Molecular Sciences, 2022, 23, 1925.	4.1	3
4	Characterization of an Allosteric Pocket in Zika Virus NS2B-NS3 Protease. Journal of Chemical Information and Modeling, 2022, 62, 945-957.	5.4	4
5	Propedia: a database for protein–peptide identification based on a hybrid clustering algorithm. BMC Bioinformatics, 2021, 22, 1.	2.6	261
6	ToxAnalyzer: A user-friendly web tool for interactive data analysis and visualization of chemical compounds from the Comparative Toxicogenomics Database (CTD)â,,¢. Computational Toxicology, 2021, 19, 100170.	3.3	1
7	Studying effects of different protonation states of His11 and His102 in ribose-5-phosphate isomerase of Trypanosoma cruzi: an example of cooperative behavior. Journal of Biomolecular Structure and Dynamics, 2020, 38, 2047-2056.	3.5	4
8	Shared Binding Mode of Perrottetinene and Tetrahydrocannabinol Diastereomers inside the CB1 Receptor May Incentivize Novel Medicinal Drug Design: Findings from an in Silico Assay. ACS Chemical Neuroscience, 2020, 11, 4289-4300.	3.5	3
9	Profiling selectivity of chagasin mutants towards cysteine proteases cruzain or cathepsin L through molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 2020, 39, 1-13.	3.5	1
10	Antigenic and Substrate Preference Differences between Scorpion and Spider Dermonecrotic Toxins, a Comparative Investigation. Toxins, 2020, 12, 631.	3.4	7
11	Insights into the Mechanism of Ethionamide Resistance in Mycobacterium tuberculosis through an in silico Structural Evaluation of EthA and Mutants Identified in Clinical Isolates. Catalysts, 2020, 10, 543.	3.5	4
12	Proteus: An algorithm for proposing stabilizing mutation pairs based on interactions observed in known protein 3D structures. BMC Bioinformatics, 2020, 21, 275.	2.6	6
13	Glutantβase: a database for improving the rational design of glucose-tolerant β-glucosidases. BMC Molecular and Cell Biology, 2020, 21, 50.	2.0	9
14	Structural insights into NS5B protein of novel equine hepaciviruses and pegiviruses complexed with polymerase inhibitors. Virus Research, 2020, 278, 197867.	2.2	8
15	A Brief History of Bioinformatics Told by Data Visualization. Lecture Notes in Computer Science, 2020, , 235-246.	1.3	0
16	Integrating Molecular Docking and Molecular Dynamics Simulations. Methods in Molecular Biology, 2019, 2053, 13-34.	0.9	87
17	Benzimidazole inhibitors of the major cysteine protease of <i>Trypanosoma brucei</i> . Future Medicinal Chemistry, 2019, 11, 1537-1551.	2.3	7
18	Introducing Programming Skills for Life Science Students. Biochemistry and Molecular Biology Education, 2019, 47, 288-295	1.2	16

#	Article	IF	CITATIONS
19	A Computational Method to Propose Mutations in Enzymes Based on Structural Signature Variation (SSV). International Journal of Molecular Sciences, 2019, 20, 333.	4.1	11
20	Understanding Structure–Activity Relationships for Trypanosomal Cysteine Protease Inhibitors by Simulations and Free Energy Calculations. Journal of Chemical Information and Modeling, 2019, 59, 137-148.	5.4	17
21	Proteingo: Motivation, user experience, and learning of molecular interactions in biological complexes. Entertainment Computing, 2019, 29, 31-42.	2.9	10
22	nAPOLI: a graph-based strategy to detect and visualize conserved protein-ligand interactions in large-scale. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 17, 1-1.	3.0	25
23	Thiophenacetamide as a potential modulator to NF-κB: structure and dynamics study using in silico and molecular biology assays. Journal of Biomolecular Structure and Dynamics, 2019, 37, 4395-4406.	3.5	3
24	Characterization of glucose-tolerant \hat{l}^2 -glucosidases used in biofuel production under the bioinformatics perspective: a systematic review. Genetics and Molecular Research, 2017, 16, .	0.2	19
25	Computational drug design strategies applied to the modelling of human immunodeficiency virus-1 reverse transcriptase inhibitors. Memorias Do Instituto Oswaldo Cruz, 2015, 110, 847-864.	1.6	23
26	Global and Local Controllability. Boletim Da Sociedade Paranaense De Matematica, 2014, 32, 27.	0.4	0
27	A Brief View of Molecular Modeling Approaches to P2 Receptors. , 0, , .		0
28	Modelagem computacional de proteÃnas. , 0, , .		2
29	Docagem molecular: em busca do encaixe perfeito e acessÃvel. , 0, , .		1
30	Using Computers to Improve Biofuel Production. Frontiers for Young Minds, 0, 10, .	0.8	0