Sebastian SchĤfer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5702637/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interleukin-11 drives human and mouse alcohol-related liver disease. Gut, 2023, 72, 168-179.	6.1	13
2	Inhibition of IL11 Signaling Reduces Aortic Pathology in Murine Marfan Syndrome. Circulation Research, 2022, 130, 728-740.	2.0	22
3	IL11 Activates Pancreatic Stellate Cells and Causes Pancreatic Inflammation, Fibrosis and Atrophy in a Mouse Model of Pancreatitis. International Journal of Molecular Sciences, 2022, 23, 3549.	1.8	14
4	CLIPreg: constructing translational regulatory networks from CLIP-, Ribo- and RNA-seq. Bioinformatics, 2022, 38, 3651-3653.	1.8	0
5	Hepatocyte Specific gp130 Signalling Underlies APAP Induced Liver Injury. International Journal of Molecular Sciences, 2022, 23, 7089.	1.8	4
6	A high-resolution map of human RNA translation. Molecular Cell, 2022, 82, 2885-2899.e8.	4.5	37
7	Therapeutic Targeting of Interleukin-11 Signalling Reduces Pressure Overload–Induced Cardiac Fibrosis in Mice. Journal of Cardiovascular Translational Research, 2021, 14, 222-228.	1.1	16
8	Hepatocyte-specific IL11 cis-signaling drives lipotoxicity and underlies the transition from NAFLD to NASH. Nature Communications, 2021, 12, 66.	5.8	75
9	IL11 is elevated in systemic sclerosis and IL11-dependent ERK signalling underlies TGFβ-mediated activation of dermal fibroblasts. Rheumatology, 2021, 60, 5820-5826.	0.9	36
10	Coding and non-coding roles of MOCCI (C15ORF48) coordinate to regulate host inflammation and immunity. Nature Communications, 2021, 12, 2130.	5.8	56
11	Redefining IL11 as a regeneration-limiting hepatotoxin and therapeutic target in acetaminophen-induced liver injury. Science Translational Medicine, 2021, 13, .	5.8	44
12	Similarities and differences between IL11 and IL11RA1 knockout mice for lung fibro-inflammation, fertility and craniosynostosis. Scientific Reports, 2021, 11, 14088.	1.6	26
13	The pro-regenerative effects of hyperIL6 in drug-induced liver injury are unexpectedly due to competitive inhibition of IL11 signaling. ELife, 2021, 10, .	2.8	9
14	Critical Conditions for Studying Interleukinâ€11 Signaling In Vitro and Avoiding Experimental Artefacts. Current Protocols, 2021, 1, e251.	1.3	5
15	Molecular Dissection of Pro-Fibrotic IL11 Signaling in Cardiac and Pulmonary Fibroblasts. Frontiers in Molecular Biosciences, 2021, 8, 740650.	1.6	30
16	Antibodyâ€mediated neutralization of IL11 signalling reduces ERK activation and cardiac fibrosis in a mouse model of severe pressure overload. Clinical and Experimental Pharmacology and Physiology, 2021, 48, 605-613.	0.9	10
17	Transgenic interleukin 11 expression causes cross-tissue fibro-inflammation and an inflammatory bowel phenotype in mice. PLoS ONE, 2020, 15, e0227505.	1.1	41
18	Interleukin-11 is important for vascular smooth muscle phenotypic switching and aortic inflammation, fibrosis and remodeling in mouse models. Scientific Reports, 2020, 10, 17853.	1.6	43

SEBASTIAN SCHÄPPER

#	Article	IF	CITATIONS
19	Interleukin-11 signaling underlies fibrosis, parenchymal dysfunction, and chronic inflammation of the airway. Experimental and Molecular Medicine, 2020, 52, 1871-1878.	3.2	58
20	Fibroblastâ€ s pecific IL11 signaling drives chronic inflammation in murine fibrotic lung disease. FASEB Journal, 2020, 34, 11802-11815.	0.2	44
21	Characterising the loss-of-function impact of 5' untranslated region variants in 15,708 individuals. Nature Communications, 2020, 11, 2523.	5.8	99
22	ILâ€11 in cardiac and renal fibrosis: Late to the party but a central player. British Journal of Pharmacology, 2020, 177, 1695-1708.	2.7	59
23	Hiding in Plain Sight: Interleukin-11 Emerges as a Master Regulator of Fibrosis, Tissue Integrity, and Stromal Inflammation. Annual Review of Medicine, 2020, 71, 263-276.	5.0	104
24	Title is missing!. , 2020, 15, e0227505.		0
25	Title is missing!. , 2020, 15, e0227505.		0
26	Title is missing!. , 2020, 15, e0227505.		0
27	Title is missing!. , 2020, 15, e0227505.		0
28	WWP2 regulates pathological cardiac fibrosis by modulating SMAD2 signaling. Nature Communications, 2019, 10, 3616.	5.8	44
29	Widespread Translational Control of Fibrosis in the Human Heart by RNA-Binding Proteins. Circulation, 2019, 140, 937-951.	1.6	95
30	Inhibiting Interleukin 11 Signaling Reduces Hepatocyte Death and Liver Fibrosis, Inflammation, and Steatosis in Mouse Models of Nonalcoholic Steatohepatitis. Gastroenterology, 2019, 157, 777-792.e14.	0.6	183
31	Interleukin-11 is a therapeutic target in idiopathic pulmonary fibrosis. Science Translational Medicine, 2019, 11, .	5.8	189
32	The Translational Landscape of the Human Heart. Cell, 2019, 178, 242-260.e29.	13.5	407
33	Titin truncations lead to impaired cardiomyocyte autophagy and mitochondrial function in vivo. Human Molecular Genetics, 2019, 28, 1971-1981.	1.4	19
34	deltaTE: Detection of Translationally Regulated Genes by Integrative Analysis of Riboâ€seq and RNAâ€seq Data. Current Protocols in Molecular Biology, 2019, 129, e108.	2.9	77
35	IL-11 is a crucial determinant of cardiovascular fibrosis. Nature, 2017, 552, 110-115.	13.7	451
36	Titin-truncating variants affect heart function in disease cohorts and the general population. Nature Genetics, 2017, 49, 46-53.	9.4	255

SEBASTIAN SCHÂPER

#	Article	IF	CITATIONS
37	Natural genetic variation of the cardiac transcriptome in non-diseased donors and patients with dilated cardiomyopathy. Genome Biology, 2017, 18, 170.	3.8	70
38	52 Genetic Loci Influencing MyocardialÂMass. Journal of the American College of Cardiology, 2016, 68, 1435-1448.	1.2	113
39	A mutation in the glutamate-rich region of RNA-binding motif protein 20 causes dilated cardiomyopathy through missplicing of titin and impaired Frank–Starling mechanism. Cardiovascular Research, 2016, 112, 452-463.	1.8	97
40	Wars2 is a determinant of angiogenesis. Nature Communications, 2016, 7, 12061.	5.8	45
41	Development of a Comprehensive Sequencing Assay for Inherited Cardiac Condition Genes. Journal of Cardiovascular Translational Research, 2016, 9, 3-11.	1.1	80
42	163â€Integrated allelic, transcriptional, and phenotypic dissection of the cardiac effects of titin variation in health and disease. Heart, 2015, 101, A93.1-A93.	1.2	0
43	Alternative Splicing Signatures in RNAâ€seq Data: Percent Spliced in (PSI). Current Protocols in Human Genetics, 2015, 87, 11.16.1-11.16.14.	3.5	104
44	Translational regulation shapes the molecular landscape of complex disease phenotypes. Nature Communications, 2015, 6, 7200.	5.8	79
45	Genomic landscape of rat strain and substrain variation. BMC Genomics, 2015, 16, 357.	1.2	84
46	<i>ZBTB17</i> (<i>MIZ1</i>) Is Important for the Cardiac Stress Response and a Novel Candidate Gene for Cardiomyopathy and Heart Failure. Circulation: Cardiovascular Genetics, 2015, 8, 643-652.	5.1	12
47	histoneHMM: Differential analysis of histone modifications with broad genomic footprints. BMC Bioinformatics, 2015, 16, 60.	1.2	28
48	Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and disease. Science Translational Medicine, 2015, 7, 270ra6.	5.8	375
49	Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science, 2015, 349, 982-986.	6.0	508
50	The GYF domain protein CD2BP2 is critical for embryogenesis and podocyte function. Journal of Molecular Cell Biology, 2015, 7, 402-414.	1.5	9
51	Protease inhibitor 15, a candidate gene for abdominal aortic internal elastic lamina ruptures in the rat. Physiological Genomics, 2014, 46, 418-428.	1.0	18
52	Recessive TTN truncating mutations define novel forms of core myopathy with heart disease. Human Molecular Genetics, 2014, 23, 980-991.	1.4	149
53	Natural variation of histone modification and its impact on gene expression in the rat genome. Genome Research, 2014, 24, 942-953.	2.4	53
54	RNA-binding protein RBM20 represses splicing to orchestrate cardiac pre-mRNA processing. Journal of Clinical Investigation, 2014, 124, 3419-3430.	3.9	176

SEBASTIAN SCHÄPPER

#	Article	IF	CITATIONS
55	Quantitative and Qualitative Proteome Characteristics Extracted from In-Depth Integrated Genomics and Proteomics Analysis. Cell Reports, 2013, 5, 1469-1478.	2.9	113
56	Fine Mapping of the 1p36 Deletion Syndrome Identifies Mutation of PRDM16 as a Cause of Cardiomyopathy. American Journal of Human Genetics, 2013, 93, 67-77.	2.6	164
57	RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nature Medicine, 2012, 18, 766-773.	15.2	471
58	Cell-surface sensors for real-time probing of cellular environments. Nature Nanotechnology, 2011, 6, 524-531.	15.6	201
59	Engineered cell homing. Blood, 2011, 118, e184-e191.	0.6	187
60	Mimicking the inflammatory cell adhesion cascade by nucleic acid aptamer programmed cell ell interactions. FASEB Journal, 2011, 25, 3045-3056.	0.2	43