
Joanna Wysocka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5702550/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Roles of transposable elements in the regulation of mammalian transcription. Nature Reviews Molecular Cell Biology, 2022, 23, 481-497.	37.0	135
2	Decoding the Human Face: Progress and Challenges in Understanding the Genetics of Craniofacial Morphology. Annual Review of Genomics and Human Genetics, 2022, 23, 383-412.	6.2	20
3	Making the Human Face: Elucidating the Role of Enhancers in Hominid Craniofacial Evolution. FASEB Journal, 2022, 36, .	0.5	0
4	Insights into the genetic architecture of the human face. Nature Genetics, 2021, 53, 45-53.	21.4	94
5	Reactivation of the pluripotency program precedes formation of the cranial neural crest. Science, 2021, 371, .	12.6	84
6	The Intersection of the Genetic Architectures of Orofacial Clefts and Normal Facial Variation. Frontiers in Genetics, 2021, 12, 626403.	2.3	10
7	Human–chimpanzee fused cells reveal cis-regulatory divergence underlying skeletal evolution. Nature Genetics, 2021, 53, 467-476.	21.4	46
8	Temporal dissection of an enhancer cluster reveals distinct temporal and functional contributions of individual elements. Molecular Cell, 2021, 81, 969-982.e13.	9.7	47
9	Shared heritability of human face and brain shape. Nature Genetics, 2021, 53, 830-839.	21.4	57
10	3D facial phenotyping by biometric sibling matching used in contemporary genomic methodologies. PLoS Genetics, 2021, 17, e1009528.	3.5	13
11	Genome scans of facial features in East Africans and cross-population comparisons reveal novel associations. PLoS Genetics, 2021, 17, e1009695.	3.5	13
12	Enhancer-associated H3K4 methylation safeguards in vitro germline competence. Nature Communications, 2021, 12, 5771.	12.8	20
13	FaceBase 3: analytical tools and FAIR resources for craniofacial and dental research. Development (Cambridge), 2020, 147, .	2.5	25
14	Loss of Extreme Long-Range Enhancers in Human Neural Crest Drives a Craniofacial Disorder. Cell Stem Cell, 2020, 27, 765-783.e14.	11.1	101
15	Opposing Effects of Cohesin and Transcription on CTCF Organization Revealed by Super-resolution Imaging. Molecular Cell, 2020, 80, 699-711.e7.	9.7	45
16	Transposable elements as a potent source of diverse <i>cis</i> -regulatory sequences in mammalian genomes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190347.	4.0	141
17	Epigenomic and Transcriptomic Changes During Human RPE EMT in a Stem Cell Model of Epiretinal Membrane Pathogenesis and Prevention by Nicotinamide. Stem Cell Reports, 2020, 14, 631-647.	4.8	43
18	Zscan4 binds nucleosomal microsatellite DNA and protects mouse two-cell embryos from DNA damage. Science Advances, 2020, 6, eaaz9115.	10.3	39

JOANNA WYSOCKA

#	Article	IF	CITATIONS
19	SATB1 Regulates GATA1 Protein Expression in Early Hematopoiesis and Is Deregulated in Diamond Blackfan Anemia. Blood, 2020, 136, 3-3.	1.4	0
20	Single Amino Acid Change Underlies Distinct Roles of H2A.Z Subtypes in Human Syndrome. Cell, 2019, 178, 1421-1436.e24.	28.9	65
21	The Spatiotemporal Pattern and Intensity of p53 Activation Dictates Phenotypic Diversity in p53-Driven Developmental Syndromes. Developmental Cell, 2019, 50, 212-228.e6.	7.0	48
22	2018 ISSCR Strategic Planning: Looking to the Future. Stem Cell Reports, 2019, 12, 1183-1185.	4.8	4
23	Hunting for genes that shape human faces: Initial successes and challenges for the future. Orthodontics and Craniofacial Research, 2019, 22, 207-212.	2.8	22
24	Heterogeneity in old fibroblasts is linked to variability in reprogramming and wound healing. Nature, 2019, 574, 553-558.	27.8	187
25	Genome-wide mapping of global-to-local genetic effects on human facial shape. Nature Genetics, 2018, 50, 414-423.	21.4	205
26	Tissue-selective effects of nucleolar stress and rDNA damage in developmental disorders. Nature, 2018, 554, 112-117.	27.8	125
27	Transcription-coupled changes in nuclear mobility of mammalian cis-regulatory elements. Science, 2018, 359, 1050-1055.	12.6	278
28	Histone H3 lysine 4 monomethylation modulates long-range chromatin interactions at enhancers. Cell Research, 2018, 28, 204-220.	12.0	131
29	Selective silencing of euchromatic L1s revealed by genome-wide screens for L1 regulators. Nature, 2018, 553, 228-232.	27.8	234
30	Single cell expression analysis of primate-specific retroviruses-derived HPAT lincRNAs in viable human blastocysts identifies embryonic cells co-expressing genetic markers of multiple lineages. Heliyon, 2018, 4, e00667.	3.2	23
31	Systematic perturbation of retroviral LTRs reveals widespread long-range effects on human gene regulation. ELife, 2018, 7, .	6.0	146
32	Transcriptional Dependencies in Diffuse Intrinsic Pontine Glioma. Cancer Cell, 2017, 31, 635-652.e6.	16.8	290
33	Mll3 and Mll4 Facilitate Enhancer RNA Synthesis and Transcription from Promoters Independently of H3K4 Monomethylation. Molecular Cell, 2017, 66, 568-576.e4.	9.7	322
34	CSNK1a1 Regulates PRMT1 to Maintain the Progenitor State in Self-Renewing Somatic Tissue. Developmental Cell, 2017, 43, 227-239.e5.	7.0	48
35	CHARGE syndrome modeling using patient-iPSCs reveals defective migration of neural crest cells harboring CHD7 mutations. ELife, 2017, 6, .	6.0	52
36	Zika Virus Infection Induces Cranial Neural Crest Cells to Produce Cytokines at Levels Detrimental for Neurogenesis. Cell Host and Microbe, 2016, 20, 423-428.	11.0	113

JOANNA WYSOCKA

#	Article	IF	CITATIONS
37	Ever-Changing Landscapes: Transcriptional Enhancers in Development and Evolution. Cell, 2016, 167, 1170-1187.	28.9	735
38	HIPSTR and thousands of IncRNAs are heterogeneously expressed in human embryos, primordial germ cells and stable cell lines. Scientific Reports, 2016, 6, 32753.	3.3	35
39	The FaceBase Consortium: A comprehensive resource for craniofacial researchers. Development (Cambridge), 2016, 143, 2677-88.	2.5	62
40	7SK-BAF axis controls pervasive transcription at enhancers. Nature Structural and Molecular Biology, 2016, 23, 231-238.	8.2	92
41	Foxd3 Promotes Exit from Naive Pluripotency through Enhancer Decommissioning and Inhibits Germline Specification. Cell Stem Cell, 2016, 18, 118-133.	11.1	73
42	The primate-specific noncoding RNA HPAT5 regulates pluripotency during human preimplantation development and nuclear reprogramming. Nature Genetics, 2016, 48, 44-52.	21.4	153
43	Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature, 2015, 522, 221-225.	27.8	507
44	Enhancer Divergence and cis-Regulatory Evolution in the Human and Chimp Neural Crest. Cell, 2015, 163, 68-83.	28.9	299
45	RNA helicase DDX21 coordinates transcription and ribosomal RNA processing. Nature, 2015, 518, 249-253.	27.8	232
46	ETO family protein Mtgr1 mediates Prdm14 functions in stem cell maintenance and primordial germ cell formation. ELife, 2015, 4, e10150.	6.0	51
47	Inappropriate p53 activation during development induces features of CHARGE syndrome. Nature, 2014, 514, 228-232.	27.8	117
48	Reorganization of Enhancer Patterns in Transition from Naive to Primed Pluripotency. Cell Stem Cell, 2014, 14, 838-853.	11.1	421
49	Modification of Enhancer Chromatin: What, How, and Why?. Molecular Cell, 2013, 49, 825-837.	9.7	1,200
50	Enhancerâ€mediated regulation of developmental gene expression. FASEB Journal, 2013, 27, 80.3.	0.5	0
51	Epigenomic Annotation of Enhancers Predicts Transcriptional Regulators of Human Neural Crest. Cell Stem Cell, 2012, 11, 633-648.	11.1	283
52	Enhancers as information integration hubs in development: lessons from genomics. Trends in Genetics, 2012, 28, 276-284.	6.7	248
53	A unique chromatin signature uncovers early developmental enhancers in humans. Nature, 2011, 470, 279-283.	27.8	1,949
54	Epigenomics of human embryonic stem cells and induced pluripotent stem cells: insights into pluripotency and implications for disease. Genome Medicine, 2011, 3, 36.	8.2	49

JOANNA WYSOCKA

#	Article	IF	CITATIONS
55	CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature, 2010, 463, 958-962.	27.8	527
56	ldentifying novel proteins recognizing histone modifications using peptide pull-down assay. Methods, 2006, 40, 339-343.	3.8	76
57	Histone arginine methylation and its dynamic regulation. Frontiers in Bioscience - Landmark, 2006, 11, 344.	3.0	208
58	A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature, 2006, 442, 86-90.	27.8	1,008
59	WDR5 Associates with Histone H3 Methylated at K4 and Is Essential for H3 K4 Methylation and Vertebrate Development. Cell, 2005, 121, 859-872.	28.9	725
60	Loss of HCF-1–Chromatin Association Precedes Temperature-Induced Growth Arrest of tsBN67 Cells. Molecular and Cellular Biology, 2001, 21, 3820-3829.	2.3	175