
Stergios Adamopoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5702354/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of sustainable bio-adhesives for engineered wood panels – A Review. RSC Advances, 2017, 7, 38604-38630.	1.7	259
2	Liquefaction of lignocellulosic materials and its applications in wood adhesives—A review. Industrial Crops and Products, 2018, 124, 325-342.	2.5	93
3	Dynamic vapour sorption of wood and holocellulose modified with thermosetting resins. Wood Science and Technology, 2016, 50, 165-178.	1.4	53
4	Forest Biomass Availability and Utilization Potential in Sweden: A Review. Waste and Biomass Valorization, 2021, 12, 65-80.	1.8	47
5	Topochemistry of heat-treated and N-methylol melamine-modified wood of koto (<i>Pterygota) Tj ETQq1 1 0.78 2013, 67, 137-146.</i>	4314 rgBT 0.9	/Overlock 10 42
6	Ammonium Lignosulfonate Adhesives for Particleboards with pMDI and Furfuryl Alcohol as Crosslinkers. Polymers, 2019, 11, 1633.	2.0	40
7	Surface modification of Norway spruce wood by octadecyltrichlorosilane (OTS) nanosol by dipping and water vapour diffusion properties of the OTS-modified wood. Holzforschung, 2017, 72, 45-56.	0.9	35
8	Modification of Pea Starch and Dextrin Polymers with Isocyanate Functional Groups. Polymers, 2018, 10, 939.	2.0	33
9	Study of adhesive bondlines in modified wood with fluorescence microscopy and X-ray micro-computed tomography. International Journal of Adhesion and Adhesives, 2016, 68, 351-358.	1.4	32
10	Dynamic vapour sorption and water-related properties of thermally modified Scots pine (Pinus) Tj ETQq0 0 0 rgE	BT /Overloc 2.7	k 10 Tf 50 38
11	Acoustic properties of modified wood under different humid conditions and their relevance for musical instruments. Applied Acoustics, 2018, 140, 92-99.	1.7	32
12	Effects of nano-sized zinc oxide and zinc borate impregnation on brown rot resistance of black pine (<i>Pinus nigra</i> L.) wood. Wood Material Science and Engineering, 2013, 8, 242-244.	1.1	31
13	Modification of three hardwoods with an N-methylol melamine compound and a metal-complex dye. Wood Science and Technology, 2014, 48, 123-136.	1.4	24
14	Characterization of Wood-based Industrial Biorefinery Lignosulfonates and Supercritical Water Hydrolysis Lignin. Waste and Biomass Valorization, 2020, 11, 5835-5845.	1.8	24
15	Water uptake and wetting behaviour of furfurylated, N-methylol melamine modified and heat-treated wood. European Journal of Wood and Wood Products, 2015, 73, 627-634.	1.3	22
16	Effects of chemical modification with glutaraldehyde on the weathering performance of Scots pine sapwood. Wood Science and Technology, 2012, 46, 749-767.	1.4	21
17	Wood defects during industrial-scale production of thermally modified Norway spruce and Scots pine. Wood Material Science and Engineering, 2017, 12, 14-23.	1.1	19

¹⁸Resistance of bamboo scrimber against white-rot and brown-rot fungi. Wood Material Science and
Engineering, 2020, 15, 57-63.1.119

#	Article	IF	CITATIONS
19	Impregnation of Bombax ceiba and Bombax insigne wood with a N-methylol melamine compound. Wood Science and Technology, 2013, 47, 43-58.	1.4	17
20	Crack formation, strain distribution and fracture surfaces around knots in thermally modified timber loaded in static bending. Wood Science and Technology, 2020, 54, 1001-1028.	1.4	17
21	Preparation of Polyurethane Adhesives from Crude and Purified Liquefied Wood Sawdust. Polymers, 2021, 13, 3267.	2.0	17
22	Machine learning-based prediction of internal checks in weathered thermally modified timber. Construction and Building Materials, 2021, 281, 122193.	3.2	16
23	Ring width, latewood proportion and dry density in stems of Pinus brutia Ten European Journal of Wood and Wood Products, 2009, 67, 471.	1.3	15
24	Recycling sawmilling wood chips, biomass combustion residues, and tyre fibres into cement-bonded composites: Properties of composites and life cycle analysis. Construction and Building Materials, 2021, 297, 123781.	3.2	15
25	WITHIN-TREE VARIATION IN GROWTH RATE AND CELL DIMENSIONS IN THE WOOD OF BLACK LOCUST (ROBINIA PSEUDOACACIA). IAWA Journal, 2002, 23, 191-199.	2.7	14
26	Adhesive bonding of beech wood modified with a phenol formaldehyde compound. European Journal of Wood and Wood Products, 2012, 70, 897-901.	1.3	14
27	Shear strength of furfurylated, N-methylol melamine and thermally modified wood bonded with three conventional adhesives. Wood Material Science and Engineering, 2017, 12, 236-241.	1.1	14
28	Microstructure and compressive strength of gypsum-bonded composites with papers, paperboards and Tetra Pak recycled materials. Journal of Wood Science, 2019, 65, .	0.9	13
29	Utilization of different tall oils for improving the water resistance of cellulosic fibers. Journal of Applied Polymer Science, 2019, 136, 47303.	1.3	13
30	Utilization of Partially Liquefied Bark for Production of Particleboards. Applied Sciences (Switzerland), 2020, 10, 5253.	1.3	13
31	Decay resistance of ash, beech and maple wood modified with N-methylol melamine and a metal complex dye. International Biodeterioration and Biodegradation, 2014, 89, 110-114.	1.9	12
32	Influence of liquefied wood polyol on the physical-mechanical and thermal properties of epoxy based polymer. Polymer Testing, 2017, 64, 207-216.	2.3	12
33	Tensile strength of handsheets from recovered fibers treated with <scp><i>N</i></scp> â€Methylol melamine and 1,3â€dimethylolâ€4,5â€dihydroxyethyleneurea. Journal of Applied Polymer Science, 2015, 132, .	1.3	11
34	SHEAR STRENGTH OF HEAT-TREATED SOLID WOOD BONDED WITH POLYVINYL-ACETATE REINFORCED BY NANOWOLLASTONITE. Wood Research, 2020, 65, 183-194.	0.2	11
35	Machine learning-based prediction of surface checks and bending properties in weathered thermally modified timber. Construction and Building Materials, 2021, 307, 124996.	3.2	11
36	Relationship of toughness and modulus of elasticity in static bending of small clear spruce wood specimens. European Journal of Wood and Wood Products, 2010, 68, 109-111.	1.3	10

#	Article	IF	CITATIONS
37	Gross adhesive penetration in furfurylated, N-methylol melamine-modified and heat-treated wood examined by fluorescence microscopy. European Journal of Wood and Wood Products, 2015, 73, 635-642.	1.3	10
38	Effect of open assembly time and equilibrium moisture content on the penetration of polyurethane adhesive into thermally modified wood. Journal of Adhesion, 2017, 93, 575-583.	1.8	10
39	Effects of Acid Pre-Treatments on the Swelling and Vapor Sorption of Thermally Modified Scots Pine (Pinus sylvestris L.) Wood. BioResources, 2017, 13, .	0.5	10
40	Vacuum-heat treatment of Scots pine (Pinus sylvestris L.) wood pretreated with propanetriol. Wood Material Science and Engineering, 0, , 1-9.	1.1	9
41	Polyurethane films prepared with isophorone diisocyanate functionalized wheat starch. European Polymer Journal, 2021, 161, 110826.	2.6	8
42	Prediction of bending strength of thermally modified timber using high-resolution scanning of fibre direction. European Journal of Wood and Wood Products, 2019, 77, 327-340.	1.3	7
43	Bioenergy production and utilization in different sectors in Sweden: A state of the art review. BioResources, 2020, 15, 9834-9857.	0.5	7
44	Polyurethane Wood Adhesives Prepared from Modified Polysaccharides. Polymers, 2022, 14, 539.	2.0	7
45	Alternative Materials from Agro-Industry for Wood Panel Manufacturing—A Review. Materials, 2022, 15, 4542.	1.3	7
46	Ring width, latewood proportion and density relationships in black locust wood of different origins and clones. IAWA Journal, 2010, 31, 169-178.	2.7	6
47	Distribution of blue stain in untreated and DMDHEU treated Scots pine sapwood panels after six years of outdoor weathering. European Journal of Wood and Wood Products, 2011, 69, 333-336.	1.3	6
48	Wood Structure and to pochemistry of Juniperus Excelsa. IAWA Journal, 2011, 32, 67-76.	2.7	6
49	Influencing factors, repeatability and correlation of chamber methods in measuring formaldehyde emissions from fiber- and particleboards. International Journal of Adhesion and Adhesives, 2019, 95, 102420.	1.4	6
50	Performance of Thermally Modified Spruce Timber in Outdoor Above-Ground Conditions: Checking, Dynamic Stiffness and Static Bending Properties. Applied Sciences (Switzerland), 2020, 10, 3975.	1.3	6
51	A formaldehyde-free adhesive for particleboards based on soy flour, magnesium oxide, and a plant-derived enzymatic hydrolysate. BioResources, 2020, 15, 3087-3102.	0.5	6
52	Tracheid length – growth relationships of young Pinus brutia grown on reforestation sites. IAWA Journal, 2012, 33, 39-49.	2.7	5
53	Hydrophobic Formulations Based on Tall Oil Distillation Products for High-Density Fiberboards. Materials, 2020, 13, 4025.	1.3	5
54	Migration of blue stain fungi within wax impregnated wood. IAWA Journal, 2011, 32, 88-96.	2.7	4

#	ARTICLE	IF	CITATIONS
55	Diatomaceous earth as an inorganic additive to reduce formaldehyde emissions from particleboards. Wood Material Science and Engineering, 0, , 1-6.	1.1	4
56	Evaluation of Dynamic Microchamber as a Quick Factory Formaldehyde Emission Control Method for Industrial Particleboards. Advances in Materials Science and Engineering, 2018, 2018, 1-9.	1.0	4
57	Embedment properties of thermally modified spruce timber with dowel-type fasteners. Construction and Building Materials, 2021, 313, 125517.	3.2	4
58	Identification of Fibre Components in Packaging Grade Papers. IAWA Journal, 2006, 27, 153-172.	2.7	3
59	Tensile strength of handsheets prepared with macerated fibres from solid wood modified with cross-linking agents. Holzforschung, 2015, 69, 959-966.	0.9	3
60	Prediction of Mechanical Performance of Acetylated MDF at Different Humid Conditions. Applied Sciences (Switzerland), 2020, 10, 8712.	1.3	3
61	Resistance ofPinus leucodermisheartwood and sapwood against the brown-rot fungusConiophora puteana. Wood Material Science and Engineering, 2012, 7, 242-244.	1.1	2
62	Genetic Parameters of Stem and Wood Traits in Full-Sib Silver Birch Families. Forests, 2021, 12, 159.	0.9	2
63	Resonance and time-of-flight methods for evaluating the modulus of elasticity of particleboards at different humid conditions. Wood Research, 2020, 65, 365-380.	0.2	2
64	Anatomical, Physical, Chemical, and Biological Durability Properties of Two Rattan Species of Different Diameter Classes. Forests, 2022, 13, 132.	0.9	2
65	Physical and mechanical properties of <i>Pinus leucodermis</i> wood. Wood Material Science and Engineering, 2010, 5, 50-52.	1.1	1
66	Water Repellency of Cellulosic Fibrous Mats Impregnated with Organic Solutions Based on Recycled Polystyrene. Journal of Renewable Materials, 2021, 9, 85-96.	1.1	1
67	Compression strength properties of gypsum matrix composites with recovered fibrous scrap materials from post-consumer tyres. International Journal of Materials and Product Technology, 2020. 61. 53.	0.1	0