
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5702121/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The vertical distribution of atmospheric DMS in the high Arctic summer. Tellus, Series B: Chemical and Physical Meteorology, 2022, 62, 160.	1.6	18
2	The vertical distribution of thin features over the Arctic analysed from CALIPSO observations: Part I: Optically thin clouds. Tellus, Series B: Chemical and Physical Meteorology, 2022, 63, 77.	1.6	25
3	The vertical distribution of thin features over the Arctic analysed from CALIPSO observations: Part II: Aerosols. Tellus, Series B: Chemical and Physical Meteorology, 2022, 63, 86.	1.6	20
4	Global distribution and seasonal variability of coastal low-level jets derived from ERA-Interim reanalysis. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 65, 20412.	1.7	73
5	Exploring the Dynamics of an Arctic Sea Ice Melt Event Using a Coupled Atmosphereâ€Ocean Singleâ€Column Model (AOSCM). Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	2
6	Warm and moist air intrusions into the winter Arctic: a Lagrangian view on the near-surface energy budgets. Atmospheric Chemistry and Physics, 2022, 22, 8037-8057.	4.9	5
7	The Role of Atmospheric Blocking in Regulating Arctic Warming. Geophysical Research Letters, 2022, 49, .	4.0	8
8	Central Arctic weather forecasting: Confronting the <scp>ECMWF IFS</scp> with observations from the Arctic Ocean 2018 expedition. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 1278-1299.	2.7	19
9	Meteorological and cloud conditions during the Arctic Ocean 2018 expedition. Atmospheric Chemistry and Physics, 2021, 21, 289-314.	4.9	16
10	Eulerian and Lagrangian views of warm and moist air intrusions into summer Arctic. Atmospheric Research, 2021, 256, 105586.	4.1	12
11	Vertical structure of cloud radiative heating in the tropics: confronting the EC-Earth v3.3.1/3P model with satellite observations. Geoscientific Model Development, 2021, 14, 4087-4101.	3.6	2
12	Warm-Air Advection Over Melting Sea-Ice: A Lagrangian Case Study. Boundary-Layer Meteorology, 2021, 179, 99-116.	2.3	10
13	Winter thermodynamic vertical structure in the Arctic atmosphere linked to large-scale circulation. Weather and Climate Dynamics, 2021, 2, 1263-1282.	3.5	2
14	Frequent new particle formation over the high Arctic pack ice by enhanced iodine emissions. Nature Communications, 2020, 11, 4924.	12.8	96
15	Shipborne eddy covariance observations of methane fluxes constrain Arctic sea emissions. Science Advances, 2020, 6, eaay7934.	10.3	53
16	Confronting Arctic Troposphere, Clouds, and Surface Energy Budget Representations in Regional Climate Models With Observations. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031783.	3.3	26
17	Properties of Arctic liquid and mixed-phase clouds from shipborne Cloudnet observations during ACSE 2014. Atmospheric Chemistry and Physics, 2020, 20, 14983-15002.	4.9	19
18	A Climatological Overview of Arctic Clouds. Springer Polar Sciences, 2020, , 331-360.	0.1	4

#	Article	IF	CITATIONS
19	Summers with low Arctic sea ice linked to persistence of spring atmospheric circulation patterns. Climate Dynamics, 2019, 52, 2497-2512.	3.8	27
20	A Process-Based Climatological Evaluation of AIRS Level 3 Tropospheric Thermodynamics over the High-Latitude Arctic. Journal of Applied Meteorology and Climatology, 2019, 58, 1867-1886.	1.5	5
21	Arctic Summer Airmass Transformation, Surface Inversions, and the Surface Energy Budget. Journal of Climate, 2019, 32, 769-789.	3.2	35
22	How Does Cloud Overlap Affect the Radiative Heating in the Tropical Upper Troposphere/Lower Stratosphere?. Geophysical Research Letters, 2019, 46, 5623-5631.	4.0	6
23	100 Years of Progress in Boundary Layer Meteorology. Meteorological Monographs, 2019, 59, 9.1-9.85.	5.0	61
24	The Relation Between Aerosol Vertical Distribution and Temperature Inversions in the Arctic in Winter and Spring. Geophysical Research Letters, 2019, 46, 2836-2845.	4.0	26
25	Characterization of the Sahelian-Sudan rainfall based on observations and regional climate models. Atmospheric Research, 2018, 202, 205-218.	4.1	19
26	Largeâ€eddy simulation of a warmâ€air advection episode in the summer Arctic. Quarterly Journal of the Royal Meteorological Society, 2018, 144, 2449-2462.	2.7	12
27	Role of air-mass transformations in exchange between the Arctic and mid-latitudes. Nature Geoscience, 2018, 11, 805-812.	12.9	105
28	Clouds, warm air, and a climate cooling signal over the summer Arctic. Geophysical Research Letters, 2017, 44, 1095-1103.	4.0	30
29	Response of the lower troposphere to moisture intrusions into the Arctic. Geophysical Research Letters, 2017, 44, 2527-2536.	4.0	58
30	Direct determination of the airâ€sea CO ₂ gas transfer velocity in Arctic sea ice regions. Geophysical Research Letters, 2017, 44, 3770-3778.	4.0	43
31	The free troposphere as a potential source of arctic boundary layer aerosol particles. Geophysical Research Letters, 2017, 44, 7053-7060.	4.0	35
32	The Turbulent Structure of the Arctic Summer Boundary Layer During The Arctic Summer Cloudâ€Ocean Study. Journal of Geophysical Research D: Atmospheres, 2017, 122, 9685-9704.	3.3	59
33	Modelling micro- and macrophysical contributors to the dissipation of an Arctic mixed-phase cloud during the Arctic Summer Cloud Ocean Study (ASCOS). Atmospheric Chemistry and Physics, 2017, 17, 6693-6704.	4.9	39
34	A Decade of Spaceborne Observations of the Arctic Atmosphere: Novel Insights from NASA's AIRS Instrument. Bulletin of the American Meteorological Society, 2016, 97, 2163-2176.	3.3	26
35	The atmospheric role in the Arctic water cycle: A review on processes, past and future changes, and their impacts. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 586-620.	3.0	197
36	The Effect of Downwelling Longwave and Shortwave Radiation on Arctic Summer Sea Ice. Journal of Climate, 2016, 29, 1143-1159.	3.2	74

#	Article	IF	CITATIONS
37	Sources of Sahelian‧udan moisture: Insights from a moistureâ€tracing atmospheric model. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7819-7832.	3.3	14
38	Modelling coastal low-level wind-jets: does horizontal resolution matter?. Meteorology and Atmospheric Physics, 2016, 128, 263-278.	2.0	10
39	Summer Arctic clouds in the <scp>ECMWF</scp> forecast model: an evaluation of cloud parametrization schemes. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 387-400.	2.7	46
40	Atmospheric Conditions during the Arctic Clouds in Summer Experiment (ACSE): Contrasting Open Water and Sea Ice Surfaces during Melt and Freeze-Up Seasons. Journal of Climate, 2016, 29, 8721-8744.	3.2	47
41	Warmâ€∎ir advection, air mass transformation and fog causes rapid ice melt. Geophysical Research Letters, 2015, 42, 5594-5602.	4.0	107
42	Lagrangian tracing of Sahelian Sudan moisture sources. Journal of Geophysical Research D: Atmospheres, 2015, 120, 6793-6808.	3.3	29
43	Structure and variability of the Oman coastal low-level jet. Tellus, Series A: Dynamic Meteorology and Oceanography, 2015, 67, 25285.	1.7	39
44	The vertical structure of cloud radiative heating over the Indian subcontinent during summer monsoon. Atmospheric Chemistry and Physics, 2015, 15, 11557-11570.	4.9	17
45	Largeâ€eddy simulations of an Arctic mixedâ€phase stratiform cloud observed during ISDAC: sensitivity to moisture aloft, surface fluxes and largeâ€scale forcing. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 1177-1190.	2.7	16
46	Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar. Atmospheric Measurement Techniques, 2015, 8, 4993-5007.	3.1	39
47	The thermodynamic structure of summer Arctic stratocumulus and the dynamic coupling to the surface. Atmospheric Chemistry and Physics, 2014, 14, 12573-12592.	4.9	55
48	The Arctic summer atmosphere: an evaluation of reanalyses using ASCOS data. Atmospheric Chemistry and Physics, 2014, 14, 2605-2624.	4.9	77
49	The Arctic Summer Cloud Ocean Study (ASCOS): overview and experimental design. Atmospheric Chemistry and Physics, 2014, 14, 2823-2869.	4.9	140
50	Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system: a review. Atmospheric Chemistry and Physics, 2014, 14, 9403-9450.	4.9	145
51	The importance of spring atmospheric conditions for predictions of the Arctic summer sea ice extent. Geophysical Research Letters, 2014, 41, 5288-5296.	4.0	56
52	Near-surface meteorology during the Arctic Summer Cloud Ocean Study (ASCOS): evaluation of reanalyses and global climate models. Atmospheric Chemistry and Physics, 2014, 14, 427-445.	4.9	41
53	Arctic climate change in 21st century CMIP5 simulations with EC-Earth. Climate Dynamics, 2013, 40, 2719-2743.	3.8	146
54	Stable Atmospheric Boundary Layers and Diurnal Cycles: Challenges for Weather and Climate Models. Bulletin of the American Meteorological Society, 2013, 94, 1691-1706.	3.3	362

#	Article	IF	CITATIONS
55	Climate impact of deforestation over South Sudan in a regional climate model. International Journal of Climatology, 2013, 33, 2362-2375.	3.5	14
56	Springtime atmospheric energy transport and the control of Arctic summer sea-ice extent. Nature Climate Change, 2013, 3, 744-748.	18.8	179
57	Vertical profiling of aerosol particles and trace gases over the central Arctic Ocean during summer. Atmospheric Chemistry and Physics, 2013, 13, 12405-12431.	4.9	58
58	Cloud and boundary layer interactions over the Arctic sea ice in late summer. Atmospheric Chemistry and Physics, 2013, 13, 9379-9399.	4.9	155
59	On the Relationship between Thermodynamic Structure and Cloud Top, and Its Climate Significance in the Arctic. Journal of Climate, 2012, 25, 2374-2393.	3.2	118
60	Modelling atmospheric structure, cloud and their response to CCN in the central Arctic: ASCOS case studies. Atmospheric Chemistry and Physics, 2012, 12, 3419-3435.	4.9	52
61	Meteorological conditions in the central Arctic summer during the Arctic Summer Cloud Ocean Study (ASCOS). Atmospheric Chemistry and Physics, 2012, 12, 6863-6889.	4.9	109
62	On the fog variability over south Asia. Climate Dynamics, 2012, 39, 2993-3005.	3.8	82
63	Mixing, heat fluxes and heat content evolution of the Arctic Ocean mixed layer. Ocean Science, 2011, 7, 335-349.	3.4	38
64	An Ensemble of Arctic Simulations of the AOE-2001 Field Experiment. Atmosphere, 2011, 2, 146-170.	2.3	2
65	Aerosol composition and sources in the central Arctic Ocean during ASCOS. Atmospheric Chemistry and Physics, 2011, 11, 10619-10636.	4.9	120
66	Characteristics of water-vapour inversions observed over the Arctic by Atmospheric Infrared Sounder (AIRS) and radiosondes. Atmospheric Chemistry and Physics, 2011, 11, 9813-9823.	4.9	64
67	On the potential contribution of open lead particle emissions to the central Arctic aerosol concentration. Atmospheric Chemistry and Physics, 2011, 11, 3093-3105.	4.9	54
68	Comparing Estimates of Turbulence Based on Near-Surface Measurements in the Nocturnal Stable Boundary Layer. Boundary-Layer Meteorology, 2011, 138, 43-60.	2.3	1
69	Warm winds from the Pacific caused extensive Arctic sea-ice melt in summer 2007. Climate Dynamics, 2011, 36, 2103-2112.	3.8	121
70	A transitioning Arctic surface energy budget: the impacts of solar zenith angle, surface albedo and cloud radiative forcing. Climate Dynamics, 2011, 37, 1643-1660.	3.8	162
71	Measurements of bubble size spectra within leads in the Arctic summer pack ice. Ocean Science, 2011, 7, 129-139.	3.4	50
72	The Effects of Critical Layers on Residual Layer Turbulence. Journals of the Atmospheric Sciences, 2009, 66, 468-480.	1.7	38

5

#	Article	IF	CITATIONS
73	Mesoscale Variability in the Summer Arctic Boundary Layer. Boundary-Layer Meteorology, 2009, 130, 383-406.	2.3	20
74	Stratiform Cloud—Inversion Characterization During the Arctic Melt Season. Boundary-Layer Meteorology, 2009, 132, 455-474.	2.3	69
75	The vertical structure of the lower Arctic troposphere analysed from observations and the ERAâ€40 reanalysis. Quarterly Journal of the Royal Meteorological Society, 2009, 135, 431-443.	2.7	132
76	On the Scale-dependence of the Gradient Richardson Number in the Residual Layer. Boundary-Layer Meteorology, 2008, 127, 57-72.	2.3	66
77	An evaluation of Arctic cloud and radiation processes during the SHEBA year: simulation results from eight Arctic regional climate models. Climate Dynamics, 2008, 30, 203-223.	3.8	66
78	Vertical structure of recent Arctic warming. Nature, 2008, 451, 53-56.	27.8	494
79	The Arctic and Antarctic: Two Faces of Climate Change. Eos, 2008, 89, 177-178.	0.1	26
80	How Well Do Regional Climate Models Reproduce Radiation and Clouds in the Arctic? An Evaluation of ARCMIP Simulations. Journal of Applied Meteorology and Climatology, 2008, 47, 2405-2422.	1.5	106
81	Is There a Diurnal Cycle in the Summer Cloud-Capped Arctic Boundary Layer?. Journals of the Atmospheric Sciences, 2007, 64, 3970-3986.	1.7	36
82	Can Ice-Nucleating Aerosols Affect Arctic Seasonal Climate?. Bulletin of the American Meteorological Society, 2007, 88, 541-550.	3.3	202
83	Modeling of the Coastal Boundary Layer and Pollutant Transport in New England. Journal of Applied Meteorology and Climatology, 2006, 45, 137-154.	1.5	28
84	Aerosol number–size distributions during clear and fog periods in the summer high Arctic: 1991, 1996 and 2001. Tellus, Series B: Chemical and Physical Meteorology, 2006, 58, 41-50.	1.6	57
85	High Spatial and Temporal Variability of Dry Deposition in a Coastal Region. Environmental Fluid Mechanics, 2005, 5, 357-372.	1.6	3
86	The Summer Arctic Boundary Layer during the Arctic Ocean Experiment 2001 (AOE-2001). Boundary-Layer Meteorology, 2005, 117, 5-36.	2.3	77
87	â€ ⁻ Modelling the Arctic Boundary Layer: An Evaluation of Six Arcmip Regional-Scale Models using Data from the Sheba Project'. Boundary-Layer Meteorology, 2005, 117, 337-381.	2.3	131
88	The Summertime Arctic Atmosphere: Meteorological Measurements during the Arctic Ocean Experiment 2001. Bulletin of the American Meteorological Society, 2004, 85, 1305-1322.	3.3	65
89	Variability in the summertime coastal marine atmospheric boundary-layer off California, USA. Quarterly Journal of the Royal Meteorological Society, 2004, 130, 423-448.	2.7	13
90	Can marine micro-organisms influence melting of the Arctic pack ice?. Eos, 2004, 85, 25.	0.1	79

#	Article	IF	CITATIONS
91	Experimental Equipment: A Supplement to The Summertime Arctic Atmosphere: Meteorological Measurements during the Arctic Ocean Experiment 2001. Bulletin of the American Meteorological Society, 2004, 85, ES14-ES18.	3.3	74
92	The Swedish Regional Climate Modelling Programme, SWECLIM: a review. Ambio, 2004, 33, 176-82.	5.5	6
93	Model simulations of the Arctic atmospheric boundary-layer from the SHEBA year. Ambio, 2004, 33, 221-7.	5.5	0
94	The structure of gradually transforming marine stratocumulus during the ASTEX first Lagrangian experiment. Quarterly Journal of the Royal Meteorological Society, 2003, 129, 1071-1100.	2.7	7
95	The Turbulence Structure of the Stable Atmospheric Boundary Layer Around a Coastal Headland: Aircraft Observations and Modelling Results. Boundary-Layer Meteorology, 2003, 107, 531-559.	2.3	13
96	A Method for Determining the Small-Scale Variations of the Surface Turbulent Momentum Flux Seaward of the Coast. Journal of Applied Meteorology and Climatology, 2003, 42, 291-307.	1.7	3
97	Diurnal Cycle of Supercritical Along-Coast Flows. Journals of the Atmospheric Sciences, 2002, 59, 2615-2624.	1.7	8
98	Supercritical channel flow in the coastal atmospheric boundary layer: Idealized numerical simulations. Journal of Geophysical Research, 2001, 106, 17811-17829.	3.3	11
99	Observed Dynamics of Coastal Flow at Cape Mendocino during Coastal Waves 1996. Journals of the Atmospheric Sciences, 2001, 58, 953-977.	1.7	19
100	Observations and simulations of a non-stationary coastal atmospheric boundary layer. Quarterly Journal of the Royal Meteorological Society, 2000, 126, 445-476.	2.7	12
101	The Sensitivity Of A Stratocumulus Transition: Model Simulations Of The Astex First Lagrangian. Boundary-Layer Meteorology, 2000, 95, 57-90.	2.3	20
102	Simulations of Supercritical Flow around Points and Capes in a Coastal Atmosphere. Journals of the Atmospheric Sciences, 2000, 57, 108-135.	1.7	46
103	The sensitivity of supercritical atmospheric boundary-layer flow along a coastal mountain barrier. Tellus, Series A: Dynamic Meteorology and Oceanography, 1999, 51, 880-901.	1.7	18
104	The sensitivity of supercritical atmospheric boundary-layer flow along a coastal mountain barrier. Tellus, Series A: Dynamic Meteorology and Oceanography, 1999, 51, 880-901.	1.7	8
105	Small-Scale Variability in the Coastal Atmospheric Boundary Layer. Boundary-Layer Meteorology, 1998, 88, 23-46.	2.3	27
106	Highlights of Coastal Waves 1996. Bulletin of the American Meteorological Society, 1998, 79, 1307-1326.	3.3	71
107	Idealized Simulations of Atmospheric Coastal Flow along the Central Coast of California. Journal of Applied Meteorology and Climatology, 1998, 37, 1332-1363.	1.7	39
108	Thermal mesoscale circulations on the Baltic coast: 1. Numerical case study. Journal of Geophysical Research, 1996, 101, 18979-18997.	3.3	23

#	Article	IF	CITATIONS
109	Thermal mesoscale circulations on the Baltic coast: 2. Perturbation of surface parameters. Journal of Geophysical Research, 1996, 101, 18999-19012.	3.3	18
110	Turbulence Structure in Decoupled Marine Stratocumulus: A Case Study from the ASTEX Field Experiment. Journals of the Atmospheric Sciences, 1996, 53, 598-619.	1.7	12
111	Modeling the Impact of Marine Stratocumulus on Boundary Layer Structure. Journals of the Atmospheric Sciences, 1995, 52, 863-878.	1.7	22
112	The Near-Neutral Marine Atmospheric Boundary Layer with No Surface Shearing Stress: A Case Study. Journals of the Atmospheric Sciences, 1994, 51, 3399-3411.	1.7	69
113	Analysis of the turbulence structure of a marine low-level jet. Boundary-Layer Meteorology, 1993, 66, 105-126.	2.3	83
114	The vertical turbulence structure of the coastal marine atmospheric boundary layer. Journal of Geophysical Research, 1993, 98, 4809-4826.	3.3	48
115	Turbulence Length Scales in Stably Stratified Free Shear Flow Analyzed from Slant Aircraft Profiles. Journal of Applied Meteorology and Climatology, 1993, 32, 948-963.	1.7	64
116	Airborne observations of thermal mesoscale circulations in the coastal marine boundary layer. Journal of Geophysical Research, 1991, 96, 20499-20520.	3.3	9
117	Estimating the Effects on the Regional Precipitation Climate in a Semiarid Region Caused by an Artificial Lake Using a Mesoscale Model. Journal of Applied Meteorology and Climatology, 1991, 30, 227-250.	1.7	24
118	Analysis of a Radome Air-Motion System on a Twin-Jet Aircraft for Boundary-Layer Research. Journal of Atmospheric and Oceanic Technology, 1991, 8, 19-40.	1.3	49
119	Some tests with a surface energy balance scheme, including a bulk parameterisation for vegetation, in a mesoscale model. Boundary-Layer Meteorology, 1989, 48, 33-68.	2.3	20
120	Numerical simulations of stratiform boundary-layer clouds on the meso-Î ³ -scale. Part II: The influence of a step change in surface roughness and surface temperature. Boundary-Layer Meteorology, 1988, 44, 207-230.	2.3	9
121	Numerical simulations of stratiform boundary-layer clouds on the meso-γ-scale. Part I: The influence of terrain height differences. Boundary-Layer Meteorology, 1988, 44, 33-72.	2.3	16