
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5701359/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Case Report: Heat Suit Training May Increase Hemoglobin Mass in Elite Athletes. International Journal of Sports Physiology and Performance, 2022, 17, 115-119.                                                                         | 1.1 | 6         |
| 2  | Compatibility of Concurrent Aerobic and Strength Training for Skeletal Muscle Size and Function: An<br>Updated Systematic Review and Meta-Analysis. Sports Medicine, 2022, 52, 601-612.                                                | 3.1 | 44        |
| 3  | Heat suit training increases hemoglobin mass in elite cross ountry skiers. Scandinavian Journal of<br>Medicine and Science in Sports, 2022, 32, 1089-1098.                                                                             | 1.3 | 7         |
| 4  | Resistance exercise training increases skeletal muscle mitochondrial respiration in chronic obstructive pulmonary disease. JCSM Rapid Communications, 2022, 5, 194-204.                                                                | 0.6 | 0         |
| 5  | Ribosome accumulation during early phase resistance training in humans. Acta Physiologica, 2022, 235, e13806.                                                                                                                          | 1.8 | 13        |
| 6  | No Differences Between 12 Weeks of Block- vs. Traditional-Periodized Training in Performance<br>Adaptations in Trained Cyclists. Frontiers in Physiology, 2022, 13, 837634.                                                            | 1.3 | 7         |
| 7  | Heat Training Efficiently Increases and Maintains Hemoglobin Mass and Temperate Endurance<br>Performance in Elite Cyclists. Medicine and Science in Sports and Exercise, 2022, 54, 1515-1526.                                          | 0.2 | 7         |
| 8  | Case Report: Effects of Multiple Seasons of Heavy Strength Training on Muscle Strength and Cycling<br>Sprint Power in Elite Cyclists. Frontiers in Sports and Active Living, 2022, 4, 860685.                                          | 0.9 | 1         |
| 9  | Strength and Power Testing of Athletes: Associations of Common Assessments Over Time.<br>International Journal of Sports Physiology and Performance, 2022, 17, 1280-1288.                                                              | 1.1 | 6         |
| 10 | Five weeks of heat training increases haemoglobin mass in elite cyclists. Experimental Physiology, 2021,<br>106, 316-327.                                                                                                              | 0.9 | 28        |
| 11 | Effects of including sprints during prolonged cycling on hormonal and muscular responses and recovery in elite cyclists. Scandinavian Journal of Medicine and Science in Sports, 2021, 31, 529-541.                                    | 1.3 | 4         |
| 12 | Force-velocity profiling in athletes: Reliability and agreement across methods. PLoS ONE, 2021, 16, e0245791.                                                                                                                          | 1.1 | 26        |
| 13 | Vitamin D <sub>3</sub> supplementation does not enhance the effects of resistance training in older adults. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 599-628.                                                             | 2.9 | 19        |
| 14 | A Comparison of the Effect of Strength Training on Cycling Performance between Men and Women.<br>Journal of Functional Morphology and Kinesiology, 2021, 6, 29.                                                                        | 1.1 | 3         |
| 15 | The Aerobic and Anaerobic Contribution During Repeated 30-s Sprints in Elite Cyclists. Frontiers in Physiology, 2021, 12, 692622.                                                                                                      | 1.3 | 1         |
| 16 | Effects of Including Sprints in LIT Sessions during a 14-d Camp on Muscle Biology and Performance<br>Measures in Elite Cyclists. Medicine and Science in Sports and Exercise, 2021, 53, 2333-2345.                                     | 0.2 | 5         |
| 17 | Performance-Determining Variables in Long-Distance Events: Should They Be Determined From a Rested<br>State or After Prolonged Submaximal Exercise?. International Journal of Sports Physiology and<br>Performance, 2021, 16, 647-654. | 1.1 | 5         |
| 18 | Chronic obstructive pulmonary disease does not impair responses to resistance training. Journal of<br>Translational Medicine, 2021, 19, 292.                                                                                           | 1.8 | 5         |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Superior On-Ice Performance After Short-Interval vs. Long-Interval Training in Well-Trained<br>Adolescent Ice Hockey Players. Journal of Strength and Conditioning Research, 2021, Publish Ahead of<br>Print, S76-S80.          | 1.0 | 2         |
| 20 | Training wearing thermal clothing and training in hot ambient conditions are equally effective methods of heat acclimation. Journal of Science and Medicine in Sport, 2021, 24, 763-767.                                        | 0.6 | 8         |
| 21 | Should we individualize training based on forceâ€velocity profiling to improve physical performance in athletes?. Scandinavian Journal of Medicine and Science in Sports, 2021, 31, 2198-2210.                                  | 1.3 | 17        |
| 22 | Superior Physiological Adaptations After a Microcycle of Short Intervals Versus Long Intervals in Cyclists. International Journal of Sports Physiology and Performance, 2021, 16, 1432-1438.                                    | 1.1 | 1         |
| 23 | Equal-Volume Strength Training With Different Training Frequencies Induces Similar Muscle<br>Hypertrophy and Strength Improvement in Trained Participants. Frontiers in Physiology, 2021, 12,<br>789403.                        | 1.3 | 7         |
| 24 | Adding Whole-Body Vibration to Preconditioning Squat Exercise Increases Cycling Sprint<br>Performance. Journal of Strength and Conditioning Research, 2020, 34, 1354-1361.                                                      | 1.0 | 8         |
| 25 | Benefits of higher resistanceâ€training volume are related to ribosome biogenesis. Journal of<br>Physiology, 2020, 598, 543-565.                                                                                                | 1.3 | 57        |
| 26 | Factors Influencing Running Velocity at Lactate Threshold in Male and Female Runners at Different<br>Levels of Performance. Frontiers in Physiology, 2020, 11, 585267.                                                          | 1.3 | 13        |
| 27 | Increased biological relevance of transcriptome analyses in human skeletal muscle using a<br>model-specific pipeline. BMC Bioinformatics, 2020, 21, 548.                                                                        | 1.2 | 7         |
| 28 | Effects of Including Sprints in One Weekly Low-Intensity Training Session During the Transition Period of Elite Cyclists. Frontiers in Physiology, 2020, 11, 1000.                                                              | 1.3 | 11        |
| 29 | Adaptations to strength training differ between endurance-trained and untrained women. European<br>Journal of Applied Physiology, 2020, 120, 1541-1549.                                                                         | 1.2 | 8         |
| 30 | No effect of increasing protein intake during military exercise with severe energy deficit on body composition and performance. Scandinavian Journal of Medicine and Science in Sports, 2020, 30, 865-877.                      | 1.3 | 11        |
| 31 | Superior performance improvements in elite cyclists following shortâ€interval vs effortâ€matched<br>longâ€interval training. Scandinavian Journal of Medicine and Science in Sports, 2020, 30, 849-857.                         | 1.3 | 30        |
| 32 | Systemic and muscular responses to effortâ€matched short intervals and long intervals in elite cyclists. Scandinavian Journal of Medicine and Science in Sports, 2020, 30, 1140-1150.                                           | 1.3 | 7         |
| 33 | The Effect of 30-Second Sprints During Prolonged Exercise on Gross Efficiency, Electromyography,<br>and Pedaling Technique in Elite Cyclists. International Journal of Sports Physiology and Performance,<br>2020, 15, 562-570. | 1.1 | 4         |
| 34 | A 11â€day compressed overload and taper induces larger physiological improvements than a normal taper in elite cyclists. Scandinavian Journal of Medicine and Science in Sports, 2019, 29, 1856-1865.                           | 1.3 | 5         |
| 35 | Comparison of Short-Sprint and Heavy Strength Training on Cycling Performance. Frontiers in Physiology, 2019, 10, 1132.                                                                                                         | 1.3 | 9         |
| 36 | <p>Block periodization of endurance training – a systematic review and meta-analysis</p> .<br>Open Access Journal of Sports Medicine, 2019, Volume 10, 145-160.                                                                 | 0.6 | 11        |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Case Studies in Physiology: Temporal changes in determinants of aerobic performance in individual going from alpine skier to world junior champion time trial cyclist. Journal of Applied Physiology, 2019, 127, 306-311. | 1.2 | 16        |
| 38 | Eccentric cycling does not improve cycling performance in amateur cyclists. PLoS ONE, 2019, 14, e0208452.                                                                                                                 | 1.1 | 8         |
| 39 | Block periodization of strength and endurance training is superior to traditional periodization in ice hockey players. Scandinavian Journal of Medicine and Science in Sports, 2019, 29, 180-188.                         | 1.3 | 15        |
| 40 | Hypobaric live highâ€ŧrain low does not improve aerobic performance more than live lowâ€ŧrain low in<br>crossâ€country skiers. Scandinavian Journal of Medicine and Science in Sports, 2018, 28, 1636-1652.               | 1.3 | 32        |
| 41 | A Scientific Approach to Improve Physiological Capacity of an Elite Cyclist. International Journal of<br>Sports Physiology and Performance, 2018, 13, 390-393.                                                            | 1.1 | 19        |
| 42 | Strength training improves doubleâ€poling performance after prolonged submaximal exercise in<br>crossâ€country skiers. Scandinavian Journal of Medicine and Science in Sports, 2018, 28, 893-904.                         | 1.3 | 18        |
| 43 | Determinants of maximal wholeâ€body fat oxidation in elite crossâ€country skiers: Role of skeletal<br>muscle mitochondria. Scandinavian Journal of Medicine and Science in Sports, 2018, 28, 2494-2504.                   | 1.3 | 32        |
| 44 | Power Production and Biochemical Markers of Metabolic Stress and Muscle Damage Following a<br>Single Bout of Short-Sprint and Heavy Strength Exercise in Well-Trained Cyclists. Frontiers in<br>Physiology, 2018, 9, 155. | 1.3 | 4         |
| 45 | Effects of Initial Performance, Gross Efficiency and O2peak Characteristics on Subsequent<br>Adaptations to Endurance Training in Competitive Cyclists. Frontiers in Physiology, 2018, 9, 713.                            | 1.3 | 8         |
| 46 | Response to Millet and Brocherie. Scandinavian Journal of Medicine and Science in Sports, 2018, 28, 2244-2245.                                                                                                            | 1.3 | 0         |
| 47 | Adding vibration to highâ€intensity intervals increase time at high oxygen uptake in wellâ€trained cyclists. Scandinavian Journal of Medicine and Science in Sports, 2018, 28, 2473-2480.                                 | 1.3 | 11        |
| 48 | Effects of Cycling Training at Imposed Low Cadences: A Systematic Review. International Journal of Sports Physiology and Performance, 2017, 12, 1127-1136.                                                                | 1.1 | 6         |
| 49 | Acute effects of post-absorptive and postprandial moderate exercise on markers of inflammation in hyperglycemic individuals. European Journal of Applied Physiology, 2017, 117, 787-794.                                  | 1.2 | 3         |
| 50 | Heavy strength training improves running and cycling performance following prolonged submaximal work in wellâ€ŧrained female athletes. Physiological Reports, 2017, 5, e13149.                                            | 0.7 | 34        |
| 51 | Improvement of Ice Hockey Players' On-Ice Sprint With Combined Plyometric and Strength Training.<br>International Journal of Sports Physiology and Performance, 2017, 12, 893-900.                                        | 1.1 | 20        |
| 52 | The Effect of Whole-Body Vibration on Subsequent Sprint Performance in Well-Trained Cyclists.<br>International Journal of Sports Physiology and Performance, 2017, 12, 964-968.                                           | 1.1 | 4         |
| 53 | Short-term performance peaking in an elite cross-country mountain biker. Journal of Sports Sciences, 2017, 35, 1392-1395.                                                                                                 | 1.0 | 10        |
| 54 | 10 weeks of heavy strength training improves performance-related measurements in elite cyclists.<br>Journal of Sports Sciences, 2017, 35, 1435-1441.                                                                      | 1.0 | 22        |

| #  | Article                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Acute and longâ€term effects of blood flow restricted training on heat shock proteins and<br>endogenous antioxidant systems. Scandinavian Journal of Medicine and Science in Sports, 2017, 27,<br>1190-1201.                                                                     | 1.3 | 9         |
| 56 | Effects of Exercise in the Fasted and Postprandial State on Interstitial Glucose in Hyperglycemic<br>Individuals. Journal of Sports Science and Medicine, 2017, 16, 254-263.                                                                                                     | 0.7 | 18        |
| 57 | Upper body heavy strength training does not affect performance in junior female crossâ€country skiers.<br>Scandinavian Journal of Medicine and Science in Sports, 2016, 26, 1007-1016.                                                                                           | 1.3 | 31        |
| 58 | The Effect of Different High-Intensity Periodization Models on Endurance Adaptations. Medicine and Science in Sports and Exercise, 2016, 48, 2165-2174.                                                                                                                          | 0.2 | 51        |
| 59 | Impairment of Performance Variables After In-Season Strength-Training Cessation in Elite Cyclists.<br>International Journal of Sports Physiology and Performance, 2016, 11, 727-735.                                                                                             | 1.1 | 16        |
| 60 | 5â€week block periodization increases aerobic power in elite crossâ€country skiers. Scandinavian Journal of Medicine and Science in Sports, 2016, 26, 140-146.                                                                                                                   | 1.3 | 50        |
| 61 | Optimizing Interval Training at Power Output Associated With Peak Oxygen Uptake in Well-Trained Cyclists. Journal of Strength and Conditioning Research, 2016, 30, 999-1006.                                                                                                     | 1.0 | 17        |
| 62 | Strength training improves cycling performance, fractional utilization of VO <sub>2max</sub> and cycling economy in female cyclists. Scandinavian Journal of Medicine and Science in Sports, 2016, 26, 384-396.                                                                  | 1.3 | 53        |
| 63 | Effects of Heavy Strength Training on Running Performance and Determinants of Running<br>Performance in Female Endurance Athletes. PLoS ONE, 2016, 11, e0150799.                                                                                                                 | 1.1 | 42        |
| 64 | Optimal V̇O2max-to-mass ratio for predicting 15 km performance among elite male cross-country skiers. Open Access Journal of Sports Medicine, 2015, 6, 353.                                                                                                                      | 0.6 | 4         |
| 65 | Irisin in Blood Increases Transiently after Single Sessions of Intense Endurance Exercise and Heavy<br>Strength Training. PLoS ONE, 2015, 10, e0121367.                                                                                                                          | 1.1 | 102       |
| 66 | The Annual Training Periodization of 8 World Champions in Orienteering. International Journal of Sports Physiology and Performance, 2015, 10, 29-38.                                                                                                                             | 1.1 | 30        |
| 67 | Blood flow-restricted strength training displays high functional and biological efficacy in women: a<br>within-subject comparison with high-load strength training. American Journal of Physiology -<br>Regulatory Integrative and Comparative Physiology, 2015, 309, R767-R779. | 0.9 | 97        |
| 68 | Short intervals induce superior training adaptations compared with long intervals in cyclists – An<br>effortâ€matched approach. Scandinavian Journal of Medicine and Science in Sports, 2015, 25, 143-151.                                                                       | 1.3 | 51        |
| 69 | Strength training improves performance and pedaling characteristics in elite cyclists. Scandinavian<br>Journal of Medicine and Science in Sports, 2015, 25, e89-98.                                                                                                              | 1.3 | 74        |
| 70 | Reliable determination of trainingâ€induced alterations in muscle fiber composition in human skeletal<br>muscle using quantitative polymerase chain reaction. Scandinavian Journal of Medicine and Science in<br>Sports, 2014, 24, e332-42.                                      | 1.3 | 20        |
| 71 | The effects of heavy upper-body strength training on ice sledge hockey sprint abilities in world class players. Human Movement Science, 2014, 38, 251-261.                                                                                                                       | 0.6 | 12        |
| 72 | Block periodization of highâ€intensity aerobic intervals provides superior training effects in trained cyclists. Scandinavian Journal of Medicine and Science in Sports, 2014, 24, 34-42.                                                                                        | 1.3 | 69        |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Optimizing strength training for running and cycling endurance performance: A review. Scandinavian<br>Journal of Medicine and Science in Sports, 2014, 24, 603-612.                                                        | 1.3 | 152       |
| 74 | HIT maintains performance during the transition period and improves next season performance in well-trained cyclists. European Journal of Applied Physiology, 2014, 114, 1831-1839.                                        | 1.2 | 13        |
| 75 | Irisin and FNDC5: effects of 12-week strength training, and relations to muscle phenotype and body<br>mass composition in untrained women. European Journal of Applied Physiology, 2014, 114, 1875-1888.                   | 1.2 | 68        |
| 76 | Effects of 12 weeks of block periodization on performance and performance indices in wellâ€ŧrained cyclists. Scandinavian Journal of Medicine and Science in Sports, 2014, 24, 327-335.                                    | 1.3 | 61        |
| 77 | Seasonal changes in leg strength and vertical jump ability in internationally competing ski jumpers.<br>European Journal of Applied Physiology, 2013, 113, 1833-1838.                                                      | 1.2 | 8         |
| 78 | Acute Effect of Whole-Body Vibration on Power, One-Repetition Maximum, and Muscle Activation in<br>Power Lifters. Journal of Strength and Conditioning Research, 2012, 26, 531-539.                                        | 1.0 | 23        |
| 79 | Cyclists' Improvement of Pedaling Efficacy and Performance After Heavy Strength Training.<br>International Journal of Sports Physiology and Performance, 2012, 7, 313-321.                                                 | 1.1 | 16        |
| 80 | Strength training elevates HSP27, HSP70 and αB-crystallin levels in musculi vastus lateralis and<br>trapezius. European Journal of Applied Physiology, 2012, 112, 1773-1782.                                               | 1.2 | 37        |
| 81 | Strength and hypertrophy with resistance training: chasing a hormonal ghost. European Journal of<br>Applied Physiology, 2012, 112, 1985-1987.                                                                              | 1.2 | 2         |
| 82 | Effect of heavy strength training on muscle thickness, strength, jump performance, and endurance<br>performance in well-trained Nordic Combined athletes. European Journal of Applied Physiology, 2012,<br>112, 2341-2352. | 1.2 | 43        |
| 83 | High volume of endurance training impairs adaptations to 12Âweeks of strength training in<br>well-trained endurance athletes. European Journal of Applied Physiology, 2012, 112, 1457-1466.                                | 1.2 | 61        |
| 84 | Effects of In-Season Strength Maintenance Training Frequency in Professional Soccer Players. Journal of Strength and Conditioning Research, 2011, 25, 2653-2660.                                                           | 1.0 | 89        |
| 85 | The Effects of Adding Different Whole-Body Vibration Frequencies to Preconditioning Exercise on Subsequent Sprint Performance. Journal of Strength and Conditioning Research, 2011, 25, 3306-3310.                         | 1.0 | 32        |
| 86 | Strength training improves 5â€min allâ€out performance following 185 min of cycling. Scandinavian<br>Journal of Medicine and Science in Sports, 2011, 21, 250-259.                                                         | 1.3 | 69        |
| 87 | The effect of heavy strength training on muscle mass and physical performance in elite cross country skiers. Scandinavian Journal of Medicine and Science in Sports, 2011, 21, 389-401.                                    | 1.3 | 81        |
| 88 | Physiological elevation of endogenous hormones results in superior strength training adaptation.<br>European Journal of Applied Physiology, 2011, 111, 2249-2259.                                                          | 1.2 | 89        |
| 89 | Effect of heavy strength training on thigh muscle cross-sectional area, performance determinants,<br>and performance in well-trained cyclists. European Journal of Applied Physiology, 2010, 108, 965-975.                 | 1.2 | 112       |
| 90 | In-season strength maintenance training increases well-trained cyclists' performance. European<br>Journal of Applied Physiology, 2010, 110, 1269-1282.                                                                     | 1.2 | 55        |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Acute Effects of Various Whole-Body Vibration Frequencies on Lower-Body Power in Trained and Untrained Subjects. Journal of Strength and Conditioning Research, 2009, 23, 1309-1315.                                 | 1.0 | 54        |
| 92 | Acute Effects of Various Whole Body Vibration Frequencies on 1RM in Trained and Untrained Subjects.<br>Journal of Strength and Conditioning Research, 2009, 23, 2068-2072.                                           | 1.0 | 35        |
| 93 | DISSIMILAR EFFECTS OF ONE- AND THREE-SET STRENGTH TRAINING ON STRENGTH AND MUSCLE MASS GAINS<br>IN UPPER AND LOWER BODY IN UNTRAINED SUBJECTS. Journal of Strength and Conditioning Research,<br>2007, 21, 157-163.  | 1.0 | 106       |
| 94 | Comparing the Performance-Enhancing Effects of Squats on a Vibration Platform With Conventional<br>Squats in Recreationally Resistance-Trained Men. Journal of Strength and Conditioning Research,<br>2004, 18, 839. | 1.0 | 98        |