
Lenka Zajickova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5701247/publications.pdf Version: 2024-02-01

Ι ΕΝΚΑ ΖΑΠΟΚΟΥΑ

#	Article	IF	CITATIONS
1	Structure elucidation of multicolor emissive graphene quantum dots towards cell guidance. Materials Chemistry Frontiers, 2022, 6, 145-154.	3.2	9
2	Depth profiling of thin plasma-polymerized amine films using GDOES in an Ar-O2 plasma. Applied Surface Science, 2022, 581, 152292.	3.1	7
3	Biodegradable Nanohybrid Materials as Candidates for Self-Sanitizing Filters Aimed at Protection from SARS-CoV-2 in Public Areas. Molecules, 2022, 27, 1333.	1.7	11
4	Coupling BODIPY with nitrogen-doped graphene quantum dots to address the water solubility of photosensitizers. Materials Chemistry Frontiers, 2022, 6, 1719-1726.	3.2	9
5	Probing the charge transfer and electron–hole asymmetry in graphene–graphene quantum dot heterostructure. Nanotechnology, 2022, 33, 325704.	1.3	2
6	Deposition penetration depth and sticking probability in plasma polymerization of cyclopropylamine. Applied Surface Science, 2021, 540, 147979.	3.1	15
7	Evidence of flexoelectricity in graphene nanobubbles created by tip induced electric field. Carbon, 2021, 179, 677-682.	5.4	6
8	Amine modification of calcium phosphate by low-pressure plasma for bone regeneration. Scientific Reports, 2021, 11, 17870.	1.6	4
9	Exploring the Emission Pathways in Nitrogen-Doped Graphene Quantum Dots for Bioimaging. Journal of Physical Chemistry C, 2021, 125, 21044-21054.	1.5	18
10	Manipulating MWCNT/TiO2 heterostructure morphology at nanoscale and its implications to NO2 sensing properties. Materials Chemistry and Physics, 2021, 271, 124901.	2.0	2
11	Electrospun Biodegradable Nanofibers Coated Homogenously by Cu Magnetron Sputtering Exhibit Fast Ion Release. Computational and Experimental Study. Membranes, 2021, 11, 965.	1.4	11
12	Effect of Low Molecular Weight Oxidized Materials and Nitrogen Groups on Adhesive Joints of Polypropylene Treated by a Cold Atmospheric Plasma Jet. Polymers, 2021, 13, 4396.	2.0	10
13	Unravelling local environments in mixed TiO2–SiO2 thin films by XPS and ab initio calculations. Applied Surface Science, 2020, 510, 145056.	3.1	23
14	Phaseâ€Engineering of 1T/2H Molybdenum Disulfide by Using Ionic Liquid for Enhanced Electrocatalytic Hydrogen Evolution. ChemElectroChem, 2020, 7, 3347-3352.	1.7	15
15	Thomson scattering versus modeling of the microwave plasma torch: a long standing discrepancy almost solved. Journal of Analytical Atomic Spectrometry, 2020, 35, 2064-2074.	1.6	4
16	Behaviour of Vascular Smooth Muscle Cells on Amine Plasma-Coated Materials with Various Chemical Structures and Morphologies. International Journal of Molecular Sciences, 2020, 21, 9467.	1.8	5
17	Well-Blended PCL/PEO Electrospun Nanofibers with Functional Properties Enhanced by Plasma Processing. Polymers, 2020, 12, 1403.	2.0	34
18	Cell type specific adhesion to surfaces functionalised by amine plasma polymers. Scientific Reports, 2020, 10, 9357.	1.6	25

<u>Lenka</u> Ζαμισκονά

#	Article	IF	CITATIONS
19	Molecular dynamics simulation of amine groups formation during plasma processing of polystyrene surfaces. Plasma Sources Science and Technology, 2020, 29, 105020.	1.3	9
20	Modeling characterisation of a bipolar pulsed discharge. Plasma Sources Science and Technology, 2020, 29, 104001.	1.3	6
21	The Effect of Uncoated SPIONs on hiPSC-Differentiated Endothelial Cells. International Journal of Molecular Sciences, 2019, 20, 3536.	1.8	2
22	Maleic anhydride and acetylene plasma copolymer surfaces for SPR immunosensing. Analytical and Bioanalytical Chemistry, 2019, 411, 7689-7697.	1.9	17
23	The transport and surface reactivity of O atoms during the atmospheric plasma etching of hydrogenated amorphous carbon films. Plasma Sources Science and Technology, 2019, 28, 035010.	1.3	11
24	On the Tensile Tests of Polyurethane and Its Composites with Carbon Nanotubes. Advances in Materials Science and Engineering, 2019, 2019, 1-8.	1.0	7
25	Effects of additives on atmospheric pressure gliding arc applied to the modification of polypropylene. Surface and Coatings Technology, 2019, 372, 45-55.	2.2	15
26	Atomic layer deposition of titanium dioxide on multi-walled carbon nanotubes for ammonia gas sensing. Surface and Coatings Technology, 2019, 370, 235-243.	2.2	24
27	Plasma-Coated Polycaprolactone Nanofibers with Covalently Bonded Platelet-Rich Plasma Enhance Adhesion and Growth of Human Fibroblasts. Nanomaterials, 2019, 9, 637.	1.9	47
28	Determination of tip transfer function for quantitative MFM using frequency domain filtering and least squares method. Scientific Reports, 2019, 9, 3880.	1.6	16
29	Bioactive TiCaPCON-coated PCL nanofibers as a promising material for bone tissue engineering. Applied Surface Science, 2019, 479, 796-802.	3.1	23
30	Homogeneity and penetration depth of atmospheric pressure plasma polymerization onto electrospun nanofibrous mats. Applied Surface Science, 2019, 471, 835-841.	3.1	18
31	Carboxyl-rich plasma polymer surfaces in surface plasmon resonance immunosensing. Japanese Journal of Applied Physics, 2018, 57, 01AG06.	0.8	5
32	Predicting Optical Properties from Ab Initio Calculations. Springer Series in Surface Sciences, 2018, , 83-104.	0.3	0
33	On the plasma deposition of vancomycinâ€containing nanoâ€capsules for drugâ€delivery applications. Plasma Processes and Polymers, 2018, 15, 1700232.	1.6	25
34	Titanium Dioxide Modified Multi-Walled Carbon Nanotubes as Room Temperature NH <inf>3</inf> Gas Sensors. , 2018, , .		1
35	Enhanced Ammonia Adsorption on Directly Deposited Nanofibrous Carbon Films. Journal of Sensors, 2018, 2018, 1-14.	0.6	16
36	Stable, nanometerâ€ŧhick oxygenâ€containing plasma polymer films suited for enhanced biosensing. Plasma Processes and Polymers, 2018, 15, 1800090.	1.6	19

#	Article	IF	CITATIONS
37	Analysis of epoxy functionalized layers synthesized by plasma polymerization of allyl glycidyl ether. Physical Chemistry Chemical Physics, 2018, 20, 20070-20077.	1.3	13
38	Antibacterial biocompatible PCL nanofibers modified by COOH-anhydride plasma polymers and gentamicin immobilization. Materials and Design, 2018, 153, 60-70.	3.3	54
39	Cyclopropylamine plasma polymer surfaces for label-free SPR and QCM immunosensing of Salmonella. Sensors and Actuators B: Chemical, 2018, 276, 447-455.	4.0	30
40	Structural and Surface Compatibility Study of Modified Electrospun Poly(Îμ-caprolactone) (PCL) Composites for Skin Tissue Engineering. AAPS PharmSciTech, 2017, 18, 72-81.	1.5	152
41	High-Performance Ammonia Gas Sensors Based on Plasma Treated Carbon Nanostructures. IEEE Sensors Journal, 2017, 17, 1964-1970.	2.4	43
42	Plasma-enhanced CVD of functional coatings in Ar/maleic anhydride/C ₂ H ₂ homogeneous dielectric barrier discharges at atmospheric pressure. Plasma Physics and Controlled Fusion, 2017, 59, 034003.	0.9	13
43	Optical properties of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Ti</mml:mi><mml:mi mathvariant="normal">O<mml:mn>2</mml:mn></mml:mi </mml:msub></mml:mrow> solid solutions. Physical Review B. 2017. 95</mml:math 	>x <td>niz</td>	niz
44	Carboxyl-anhydride and amine plasma coating of PCL nanofibers to improve their bioactivity. Materials and Design, 2017, 132, 257-265.	3.3	45
45	Cyclopropylamine plasma polymers for increased cell adhesion and growth. Plasma Processes and Polymers, 2017, 14, 1600123.	1.6	26
46	Modelling of the gas flow and plasma co-polymerization of two monomers in an atmospheric-pressure dielectric barrier discharge. Surface and Coatings Technology, 2017, 314, 139-147.	2.2	12
47	XPS depth profiling of derivatized amine and anhydride plasma polymers: Evidence of limitations of the derivatization approach. Applied Surface Science, 2017, 394, 578-585.	3.1	33
48	Liquid assisted plasma enhanced chemical vapour deposition with a non-thermal plasma jet at at atmospheric pressure. Thin Solid Films, 2017, 630, 71-78.	0.8	25
49	Immobilization of Platelet-Rich Plasma onto COOH Plasma-Coated PCL Nanofibers Boost Viability and Proliferation of Human Mesenchymal Stem Cells. Polymers, 2017, 9, 736.	2.0	35
50	Investigation of Pristine Graphite Oxide as Room-Temperature Chemiresistive Ammonia Gas Sensing Material. Sensors, 2017, 17, 320.	2.1	54
51	Biocompatibility of Thin Films Studied by Q-Phase. , 2016, , .		0
52	Deposition of Functional Plasma Polymers Influenced by Reactor Geometry in Capacitively Coupled Discharges. Plasma Processes and Polymers, 2016, 13, 279-286.	1.6	40
53	Electric field measurements in a kHz-driven He jet—the influence of the gas flow speed. Plasma Sources Science and Technology, 2016, 25, 065026.	1.3	40
54	Investigation of Ammonia Gas Sensing Properties of Graphite Oxide. Procedia Engineering, 2016, 168, 231-234.	1.2	20

#	Article	IF	CITATIONS
55	Coherent and incoherent Thomson scattering on an argon/hydrogen microwave plasma torch with transient behaviour. Plasma Sources Science and Technology, 2016, 25, 055018.	1.3	11
56	Accurate prediction of band gaps and optical properties of HfO ₂ . Journal Physics D: Applied Physics, 2016, 49, 395301.	1.3	31
57	Effect of Additive Oxygen on the Reactive Species Profile and Microbicidal Property of a Helium Atmospheric Pressure Plasma Jet. Plasma Processes and Polymers, 2016, 13, 1089-1105.	1.6	39
58	Gas sensing properties of carbon nanomaterials. , 2016, , .		2
59	Carboxyl-rich coatings deposited by atmospheric plasma co-polymerization of maleic anhydride and acetylene. Surface and Coatings Technology, 2016, 295, 37-45.	2.2	37
60	Tetrakis(trimethylsilyloxy)silane for nanostructured SiO2-like films deposited by PECVD at at atmospheric pressure. Surface and Coatings Technology, 2016, 295, 112-118.	2.2	23
61	The robust bio-immobilization based on pulsed plasma polymerization of cyclopropylamine and glutaraldehyde coupling chemistry. Applied Surface Science, 2016, 360, 28-36.	3.1	28
62	The adhesion of normal human dermal fibroblasts to the cyclopropylamine plasma polymers studied by holographic microscopy. Surface and Coatings Technology, 2016, 295, 70-77.	2.2	31
63	Development of effective QCM biosensors by cyclopropylamine plasma polymerization and antibody immobilization using cross-linking reactions. Surface and Coatings Technology, 2016, 290, 116-123.	2.2	40
64	Plasma Enhanced CVD of Organosilicon Thin Films on Electrospun Polymer Nanofibers. Plasma Processes and Polymers, 2015, 12, 1231-1243.	1.6	33
65	Cell proliferation on modified DLC thin films prepared by plasma enhanced chemical vapor deposition. Biointerphases, 2015, 10, 029520.	0.6	23
66	MEMS Carbon Nanotubes Field Emission Pressure Sensor With Simplified Design: Performance and Field Emission Properties Study. IEEE Sensors Journal, 2015, 15, 1430-1436.	2.4	21
67	Protective double-layer coatings prepared by plasma enhanced chemical vapor deposition on tool steel. Surface and Coatings Technology, 2015, 272, 229-238.	2.2	11
68	Sensing Properties of Multiwalled Carbon Nanotubes Grown in MW Plasma Torch: Electronic and Electrochemical Behavior, Gas Sensing, Field Emission, IR Absorption. Sensors, 2015, 15, 2644-2661.	2.1	41
69	On the interplay of gas dynamics and the electromagnetic field in an atmospheric Ar/H ₂ microwave plasma torch. Plasma Sources Science and Technology, 2015, 24, 025030.	1.3	20
70	Atmospheric pressure barrier discharge at high temperature: Diagnostics and carbon nanotubes deposition. Journal of Applied Physics, 2015, 117, .	1.1	9
71	Simultaneous determination of dispersion model parameters and local thickness of thin films by imaging spectrophotometry. Applied Surface Science, 2015, 350, 149-155.	3.1	10
72	Deposition of stable amine coating onto polycaprolactone nanofibers by low pressure cyclopropylamine plasma polymerization. Thin Solid Films, 2015, 581, 7-13.	0.8	36

#	Article	IF	CITATIONS
73	Pulsed Plasma Polymerization of Cyclopropylamine for Deposition of Stable Amine-Rich Films Aimed at the Bio-Immobilization Applications. , 2015, , .		0
74	Cyclopropylamine plasma polymers deposited onto quartz crystal microbalance for biosensing application. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2801-2808.	0.8	27
75	Mapping of properties of thin plasma jet films using imaging spectroscopic reflectometry. Measurement Science and Technology, 2014, 25, 115201.	1.4	17
76	Measurement of optical parameters of thin films non-uniform in thickness. , 2014, , .		0
77	Dispersion model of two-phonon absorption: application to c-Si. Optical Materials Express, 2014, 4, 1641.	1.6	11
78	Optimization of Cyclopropylamine Plasma Polymerization toward Enhanced Layer Stability in Contact with Water. Plasma Processes and Polymers, 2014, 11, 532-544.	1.6	56
79	Comparison of different modifications of screen-printed working electrodes of electrochemical sensors using carbon nanotubes and plasma treatment. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2756-2764.	0.8	6
80	Utilization of the sum rule for construction of advanced dispersion model of crystalline silicon containing interstitial oxygen. Thin Solid Films, 2014, 571, 490-495.	0.8	14
81	Assessment of non-uniform thin films using spectroscopic ellipsometry and imaging spectroscopic reflectometry. Thin Solid Films, 2014, 571, 573-578.	0.8	19
82	Broadening of dielectric response and sum rule conservation. Thin Solid Films, 2014, 571, 496-501.	0.8	14
83	Study of Microwave Torch Plasmachemical Synthesis of Iron Oxide Nanoparticles Focused on the Analysis of Phase Composition. Plasma Chemistry and Plasma Processing, 2014, 34, 327-341.	1.1	19
84	High-Speed Visualization of Filament Instabilities and Self-Organization Effect in RF Argon Plasma Jet at Atmospheric Pressure. IEEE Transactions on Plasma Science, 2014, 42, 2454-2455.	0.6	7
85	Advanced modeling for optical characterization of amorphous hydrogenated silicon films. Thin Solid Films, 2013, 541, 12-16.	0.8	13
86	PECVD of nanostructured SiO ₂ in a modulated microwave plasma jet at atmospheric pressure. Journal Physics D: Applied Physics, 2013, 46, 335202.	1.3	25
87	Low pressure plasmachemical processing of multi-walled carbon nanotubes for the production of polyurethane composite films with improved mechanical properties. Thin Solid Films, 2013, 538, 7-15.	0.8	6
88	Application of sum rule to the dispersion model of hydrogenated amorphous silicon. Thin Solid Films, 2013, 539, 233-244.	0.8	24
89	Application of Thomas–Reiche–Kuhn sum rule to construction of advanced dispersion models. Thin Solid Films, 2013, 534, 432-441.	0.8	30
90	Plasmachemical synthesis of maghemite nanoparticles in atmospheric pressure microwave torch. Materials Letters, 2011, 65, 982-984.	1.3	25

#	Article	IF	CITATIONS
91	Carbon composite micro- and nano-tubes-based electrodes for detection of nucleic acids. Nanoscale Research Letters, 2011, 6, 385.	3.1	14
92	Combination of synchrotron ellipsometry and table-top optical measurements for determination of band structure of DLC films. Thin Solid Films, 2011, 519, 2694-2697.	0.8	7
93	Dielectric response and structure of amorphous hydrogenated carbon films with nitrogen admixture. Thin Solid Films, 2011, 519, 4299-4308.	0.8	16
94	Optical and mechanical characterization of ultrananocrystalline diamond films prepared in dual frequency discharges. Surface and Coatings Technology, 2010, 204, 1997-2001.	2.2	2
95	Deposition of hard thin films from HMDSO in atmospheric pressure dielectric barrier discharge. Journal Physics D: Applied Physics, 2010, 43, 225403.	1.3	43
96	Synthesis of carbon nanotubes by plasma-enhanced chemical vapor deposition in an atmospheric-pressure microwave torch. Pure and Applied Chemistry, 2010, 82, 1259-1272.	0.9	17
97	MoÌ^ssbauer Effect Study of Iron Thin Films on Siâ^•SiO[sub x] Substrate and Iron Phases at Deposited Carbon Nanotubes. , 2010, , .		0
98	Synthesis of Carbon Nanostructures by Plasma Enhanced Chemical Vapour Deposition at Atmospheric Pressure. Journal of Electrical Engineering, 2010, 61, 311-313.	0.4	10
99	Band structure of diamond-like carbon films assessed from optical measurements in wide spectral range. Diamond and Related Materials, 2010, 19, 114-122.	1.8	12
100	Carbon Nanotubes Functionalized in Oxygen and Water Low Pressure Discharges used as Reinforcement of Polyurethane Composites. Plasma Processes and Polymers, 2009, 6, S864.	1.6	12
101	Mechanical and microwave absorbing properties of carbon-filled polyurethane. Micron, 2009, 40, 70-73.	1.1	14
102	Synthesis of carbon nanotubes and iron oxide nanoparticles in MW plasma torch with Fe(CO)5 in gas feed. Applied Surface Science, 2009, 255, 5421-5424.	3.1	25
103	Limitations and possible improvements of DLC dielectric response model based on parameterization of density of states. Diamond and Related Materials, 2009, 18, 413-418.	1.8	9
104	Optical Characterization of Ultra-Thin Iron and Iron Oxide Films. E-Journal of Surface Science and Nanotechnology, 2009, 7, 486-490.	0.1	1
105	Carbon Nanostructures in MEMS Applications. , 2008, , .		1
106	Optical characterization of ultrananocrystalline diamond films. Diamond and Related Materials, 2008, 17, 1278-1282.	1.8	15
107	Modeling of optical constants of diamond-like carbon. Diamond and Related Materials, 2008, 17, 705-708.	1.8	13
108	Deposition of protective coatings in rf organosilicon discharges. Plasma Sources Science and Technology, 2007, 16, S123-S132.	1.3	47

#	Article	IF	CITATIONS
109	Gas Pressure Sensor Based on PECVD Grown Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2007, 1018, 1.	0.1	3
110	Nanopatterned working electrode with carbon nanotubes improving electrochemical sensors. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2007, 221, 115-119.	0.1	0
111	Composition and Functional Properties of Organosilicon Plasma Polymers from Hexamethyldisiloxane and Octamethylcyclotetrasiloxane. Materials Research Society Symposia Proceedings, 2007, 1007, 1.	0.1	0
112	Models of dielectric response in disordered solids. Optics Express, 2007, 15, 16230.	1.7	46
113	Characterization of Carbon Nanotubes Deposited in Microwave Torch at Atmospheric Pressure. Plasma Processes and Polymers, 2007, 4, S245-S249.	1.6	16
114	Comparative Study of Films Deposited from HMDSO/O2 in Continuous Wave and Pulsed rf Discharges. Plasma Processes and Polymers, 2007, 4, S287-S293.	1.6	13
115	Discussion of important factors in deposition of carbon nanotubes by atmospheric pressure microwave plasma torch. Journal of Physics and Chemistry of Solids, 2007, 68, 738-743.	1.9	13
116	Organosilicon thin films deposited by plasma enhanced CVD: Thermal changes of chemical structure and mechanical properties. Journal of Physics and Chemistry of Solids, 2007, 68, 1255-1259.	1.9	24
117	Carbon nanotubes synthesized by plasma enhanced CVD: Preparation for measurements of their electrical properties for application in pressure sensor. , 2006, , .		0
118	Influence of Silicon, Oxygen and Nitrogen Admixtures Upon the Properties of Plasma Deposited Amorphous Diamond-Like Carbon Coatings. Journal of Advanced Oxidation Technologies, 2006, 9, .	0.5	0
119	Carbon nanotubes synthesis in microwave plasma torch at atmospheric pressure. Materials Science and Engineering C, 2006, 26, 1189-1193.	3.8	27
120	Comparison of structure and mechanical properties of SiO2-like films deposited in O2/HMDSO pulsed and continuous plasmas. Surface and Coatings Technology, 2006, 200, 6517-6521.	2.2	25
121	Study of magnetic field influence on charged species in a low pressure helicon reactor. European Physical Journal D, 2006, 56, B1091-B1096.	0.4	Ο
122	Microwave PECVD of nanocrystalline diamond with rf induced bias nucleation. European Physical Journal D, 2006, 56, B1218-B1223.	0.4	5
123	Carbon nanotubes synthesized by plasma enhanced CVD: preparation for measurements of their electrical properties. European Physical Journal D, 2006, 56, B1244-B1249.	0.4	2
124	Nanopatterned Working Electrode with Carbon Nanotubes Improving Electrochemical Sensors. , 2006, , \cdot		9
125	Mechanical and optical properties of plasma-polymerized vinyltriethoxysilane. Surface and Coatings Technology, 2005, 200, 468-471.	2.2	21
126	Thermal stability of the optical properties of plasma deposited diamond-like carbon thin films. Diamond and Related Materials, 2005, 14, 1795-1798.	1.8	22

#	Article	IF	CITATIONS
127	Atmospheric pressure microwave torch for synthesis of carbon nanotubes. Plasma Physics and Controlled Fusion, 2005, 47, B655-B666.	0.9	35
128	Spatially resolved measurements in r.f. capacitive discharges in argon and nitrogen. European Physical Journal D, 2004, 54, C592-C598.	0.4	0
129	Structural changes of plasma deposited SiOxCyHz thin films attained by thermal annealing. European Physical Journal D, 2004, 54, C847-C852.	0.4	3
130	Optical properties of diamond-like carbon films containing SiOx studied by the combined method of spectroscopic ellipsometry and spectroscopic reflectometry. Thin Solid Films, 2004, 455-456, 393-393.	0.8	0
131	Deposition of thin organosilicon polymer films in atmospheric pressure glow discharge. Journal Physics D: Applied Physics, 2004, 37, 2112-2120.	1.3	110
132	Study of plasma polymerization from acetylene in pulsed r.f. discharges. Thin Solid Films, 2003, 425, 72-84.	0.8	25
133	Correlation between SiOx content and properties of DLC:SiOx films prepared by PECVD. Surface and Coatings Technology, 2003, 174-175, 281-285.	2.2	30
134	Optical characterization of diamond-like carbon films using multi-sample modification of variable angle spectroscopic ellipsometry. Diamond and Related Materials, 2002, 11, 105-117.	1.8	27
135	Improvement of the efficiency of the silicon solar cells by silicon incorporated diamond-like carbon antireflective coatings. Journal of Non-Crystalline Solids, 2002, 299-302, 1147-1151.	1.5	16
136	Rf sputtering of composite SiOx/plasma polymer films and their basic properties. Surface and Coatings Technology, 2002, 151-152, 214-217.	2.2	35
137	Temperature dependence of mechanical properties of DLC/Si protective coatings prepared by PECVD. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 324, 251-254.	2.6	46
138	Plasma modification of polycarbonates. Surface and Coatings Technology, 2001, 142-144, 449-454.	2.2	81
139	XPS and ellipsometric study of DLC/silicon interface. Vacuum, 2001, 61, 269-273.	1.6	18
140	Optical characterization of diamond-like carbon films. Vacuum, 2001, 61, 279-283.	1.6	5
141	Title is missing!. Plasmas and Polymers, 2001, 6, 237-266.	1.5	121
142	Diagnostics and Application of the High Frequency Plasma Pencil. Plasma Chemistry and Plasma Processing, 2001, 21, 565-579.	1.1	19
143	Characterization of CNx/SiOy films prepared by the inductively coupled RF discharge. European Physical Journal D, 2000, 50, 453.	0.4	0
144	Deposition of nanocomposite CN x /SiO 2 films in inductively coupled r.f. discharge. Diamond and Related Materials, 2000, 9, 552-555.	1.8	2

#	Article	IF	CITATIONS
145	Characterization of silicon oxide thin films deposited by plasma enhanced chemical vapour deposition from octamethylcyclotetrasiloxane/oxygen feeds. Thin Solid Films, 1999, 338, 49-59.	0.8	29
146	HF plasma pencil — new source for plasma surface processing. Surface and Coatings Technology, 1999, 116-119, 547-551.	2.2	41
147	The influence of substrate emissivity on plasma enhanced CVD of diamond-like carbon films. European Physical Journal D, 1999, 49, 1213-1228.	0.4	22
148	Plasma-liquid technologies for treatment of archaelogical artifacts. European Physical Journal D, 1999, 49, 321-328.	0.4	6
149	Protection coatings for polycarbonates based on PECVD from organosilicon feeds. Vacuum, 1998, 50, 19-21.	1.6	26
150	Plasma-enhanced chemical vapour deposition of thin films from tetraethoxysilane and methanol: optical properties and XPS analyses. Thin Solid Films, 1996, 280, 26-36.	0.8	14