
## Fazlollah Soleymani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5700785/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A real-time mathematical computer method for potato inspection using machine vision. Computers and<br>Mathematics With Applications, 2012, 63, 268-279.                                                    | 2.7 | 119       |
| 2  | A new Bernoulli matrix method for solving high-order linear and nonlinear Fredholm<br>integro-differential equations with piecewise intervals. Applied Mathematics and Computation, 2012,<br>219, 482-497. | 2.2 | 84        |
| 3  | Finding the solution of nonlinear equations by a class of optimal methods. Computers and<br>Mathematics With Applications, 2012, 63, 764-774.                                                              | 2.7 | 70        |
| 4  | A multi-step class of iterative methods for nonlinear systems. Optimization Letters, 2014, 8, 1001-1015.                                                                                                   | 1.6 | 69        |
| 5  | A hybrid neural network Imperialist Competitive Algorithm for skin color segmentation. Mathematical and Computer Modelling, 2013, 57, 848-856.                                                             | 2.0 | 59        |
| 6  | On a numerical technique for finding multiple zeros and its dynamic. Journal of the Egyptian<br>Mathematical Society, 2013, 21, 346-353.                                                                   | 1.2 | 48        |
| 7  | A computer-aided diagnosis system for malignant melanomas. Neural Computing and Applications, 2013, 23, 2059-2071.                                                                                         | 5.6 | 47        |
| 8  | On a New Method for Computing the Numerical Solution of Systems of Nonlinear Equations. Journal of Applied Mathematics, 2012, 2012, 1-15.                                                                  | 0.9 | 46        |
| 9  | Two new classes of optimal Jarratt-type fourth-order methods. Applied Mathematics Letters, 2012, 25, 847-853.                                                                                              | 2.7 | 43        |
| 10 | Computing multiple zeros using a class of quartically convergent methods. AEJ - Alexandria<br>Engineering Journal, 2013, 52, 531-541.                                                                      | 6.4 | 43        |
| 11 | Optimal Steffensen-type methods with eighth order of convergence. Computers and Mathematics With Applications, 2011, 62, 4619-4626.                                                                        | 2.7 | 41        |
| 12 | A class of numerical algorithms for computing outer inverses. Journal of Computational and Applied Mathematics, 2014, 263, 236-245.                                                                        | 2.0 | 38        |
| 13 | An Improvement of Ostrowski's and King's Techniques with Optimal Convergence Order Eight. Journal of Optimization Theory and Applications, 2012, 153, 225-236.                                             | 1.5 | 36        |
| 14 | Semantic image classification by genetic algorithm using optimised fuzzy system based on Zernike<br>moments. Signal, Image and Video Processing, 2014, 8, 831-842.                                         | 2.7 | 30        |
| 15 | Dynamical analysis of iterative methods for nonlinear systems or how to deal with the dimension?.<br>Applied Mathematics and Computation, 2014, 244, 398-412.                                              | 2.2 | 30        |
| 16 | Some Iterative Methods Free from Derivatives and Their Basins of Attraction for Nonlinear Equations.<br>Discrete Dynamics in Nature and Society, 2013, 2013, 1-10.                                         | 0.9 | 27        |
| 17 | On a Novel Fourth-Order Algorithm for Solving Systems of Nonlinear Equations. Journal of Applied<br>Mathematics, 2012, 2012, 1-12.                                                                         | 0.9 | 26        |
| 18 | An optimized derivative-free form of the Potra–Pták method. Mathematical and Computer Modelling,<br>2012, 56, 97-104.                                                                                      | 2.0 | 26        |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Color image segmentation using neuro-fuzzy system in a novel optimized color space. Neural<br>Computing and Applications, 2013, 23, 1513-1520.                                                    | 5.6 | 26        |
| 20 | On improved three-step schemes with high efficiency index and their dynamics. Numerical Algorithms, 2014, 65, 153-169.                                                                            | 1.9 | 26        |
| 21 | Inverse multi-quadric RBF for computing the weights of FD method: Application to American options.<br>Communications in Nonlinear Science and Numerical Simulation, 2018, 64, 74-88.              | 3.3 | 26        |
| 22 | Some modifications of King's family with optimal eighth order of convergence. Mathematical and<br>Computer Modelling, 2012, 55, 1373-1380.                                                        | 2.0 | 25        |
| 23 | An iterative method for computing the approximate inverse of a square matrix and the<br>Moore–Penrose inverse of a non-square matrix. Applied Mathematics and Computation, 2013, 224,<br>671-680. | 2.2 | 25        |
| 24 | Several iterative methods with memory using self-accelerators. Applied Mathematics and Computation, 2015, 254, 452-458.                                                                           | 2.2 | 25        |
| 25 | Accurate fourteenth-order methods for solving nonlinear equations. Numerical Algorithms, 2011, 58, 513-527.                                                                                       | 1.9 | 24        |
| 26 | Tau approximate solution of weakly singular Volterra integral equations. Mathematical and Computer<br>Modelling, 2013, 57, 494-502.                                                               | 2.0 | 24        |
| 27 | Improved numerical solution of multi-asset option pricing problem: A localized RBF-FD approach.<br>Chaos, Solitons and Fractals, 2019, 119, 298-309.                                              | 5.1 | 24        |
| 28 | Numerically stable improved Chebyshev–Halley type schemes for matrix sign function. Journal of<br>Computational and Applied Mathematics, 2017, 318, 189-198.                                      | 2.0 | 23        |
| 29 | A Higher Order Iterative Method for Computing the Drazin Inverse. Scientific World Journal, The, 2013, 2013, 1-11.                                                                                | 2.1 | 22        |
| 30 | Basins of Attraction for Various Steffensen-Type Methods. Journal of Applied Mathematics, 2014, 2014, 1-17.                                                                                       | 0.9 | 22        |
| 31 | Numerical solution of nonlinear systems by a general class of iterative methods with application to nonlinear PDEs. Numerical Algorithms, 2014, 67, 223-242.                                      | 1.9 | 21        |
| 32 | A fast convergent numerical method for matrix sign function with application in SDEs. Journal of Computational and Applied Mathematics, 2015, 282, 167-178.                                       | 2.0 | 21        |
| 33 | On hyperpower family of iterations for computing outer inverses possessing high efficiencies. Linear<br>Algebra and Its Applications, 2015, 484, 477-495.                                         | 0.9 | 21        |
| 34 | An efficient computation of generalized inverse of a matrix. Applied Mathematics and Computation, 2018, 316, 89-101.                                                                              | 2.2 | 21        |
| 35 | An accelerated iterative method for computing weighted Moore–Penrose inverse. Applied<br>Mathematics and Computation, 2013, 222, 365-371.                                                         | 2.2 | 20        |
| 36 | On finding robust approximate inverses for large sparse matrices. Linear and Multilinear Algebra, 2014, 62, 1314-1334.                                                                            | 1.0 | 20        |

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Some Matrix Iterations for Computing Generalized Inverses and Balancing Chemical Equations.<br>Algorithms, 2015, 8, 982-998.                                                                   | 2.1 | 20        |
| 38 | On the construction of some tri-parametric iterative methods with memory. Numerical Algorithms, 2015, 70, 835-845.                                                                             | 1.9 | 20        |
| 39 | A Rapid Numerical Algorithm to Compute Matrix Inversion. International Journal of Mathematics and<br>Mathematical Sciences, 2012, 2012, 1-11.                                                  | 0.7 | 19        |
| 40 | ON A FAST ITERATIVE METHOD FOR APPROXIMATE INVERSE OF MATRICES. Communications of the Korean Mathematical Society, 2013, 28, 407-418.                                                          | 0.2 | 19        |
| 41 | A Class of Three-Step Derivative-Free Root Solvers with Optimal Convergence Order. Journal of Applied Mathematics, 2012, 2012, 1-15.                                                           | 0.9 | 18        |
| 42 | Higher order derivative-free iterative methods with and without memory for systems of nonlinear equations. Applied Mathematics and Computation, 2017, 314, 199-211.                            | 2.2 | 18        |
| 43 | Some optimal iterative methods and their with memory variants. Journal of the Egyptian Mathematical Society, 2013, 21, 133-141.                                                                | 1.2 | 17        |
| 44 | An improved Schulz-type iterative method for matrix inversion with application. Transactions of the Institute of Measurement and Control, 2014, 36, 983-991.                                   | 1.7 | 17        |
| 45 | A fast convergent iterative solver for approximate inverse of matrices. Numerical Linear Algebra With<br>Applications, 2014, 21, 439-452.                                                      | 1.6 | 17        |
| 46 | Iterative methods for nonlinear systems associated with finite difference approach in stochastic differential equations. Numerical Algorithms, 2016, 71, 89-102.                               | 1.9 | 17        |
| 47 | The Laplace Homotopy Analysis Method for Solving a General Fractional Diffusion Equation Arising in Nano-Hydrodynamics. Journal of Computational and Theoretical Nanoscience, 2013, 10, 33-36. | 0.4 | 16        |
| 48 | Regarding the accuracy of optimal eighth-order methods. Mathematical and Computer Modelling, 2011, 53, 1351-1357.                                                                              | 2.0 | 15        |
| 49 | Robustness of Operational Matrices of Differentiation for Solving State-Space Analysis and Optimal Control Problems. Abstract and Applied Analysis, 2013, 2013, 1-9.                           | 0.7 | 15        |
| 50 | An efficient and stable Newton-type iterative method for computing generalized inverse A T , S ( 2 )<br>\$A_{T,S}^{(2)}\$. Numerical Algorithms, 2015, 69, 569-578.                            | 1.9 | 15        |
| 51 | A General Three-Step Class of Optimal Iterations for Nonlinear Equations. Mathematical Problems in Engineering, 2011, 2011, 1-10.                                                              | 1.1 | 14        |
| 52 | Construction of Optimal Derivative-Free Techniques without Memory. Journal of Applied Mathematics, 2012, 2012, 1-24.                                                                           | 0.9 | 14        |
| 53 | Efficient optimal eighth-order derivative-free methods for nonlinear equations. Japan Journal of<br>Industrial and Applied Mathematics, 2013, 30, 287-306.                                     | 0.9 | 14        |
| 54 | Some Matrix Iterations for Computing Matrix Sign Function. Journal of Applied Mathematics, 2014, 2014, 1-9.                                                                                    | 0.9 | 14        |

4

| #  | Article                                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | An efficient matrix iteration for computing weighted Moore–Penrose inverse. Applied Mathematics<br>and Computation, 2014, 226, 441-454.                                                                                                                                                 | 2.2 | 14        |
| 56 | A mixed derivative terms removing method in multi-asset option pricing problems. Applied Mathematics<br>Letters, 2016, 60, 108-114.                                                                                                                                                     | 2.7 | 14        |
| 57 | A Local Radial Basis Function Method for High-Dimensional American Option Pricing Problems.<br>Mathematical Modelling and Analysis, 2018, 23, 117-138.                                                                                                                                  | 1.5 | 14        |
| 58 | Revisit of Jarratt method for solving nonlinear equations. Numerical Algorithms, 2011, 57, 377-388.                                                                                                                                                                                     | 1.9 | 13        |
| 59 | Approximating the Matrix Sign Function Using a Novel Iterative Method. Abstract and Applied Analysis, 2014, 2014, 1-9.                                                                                                                                                                  | 0.7 | 13        |
| 60 | A note on the stability of a <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si1.gif" display="inline" overflow="scroll"&gt;<mml:mi>p</mml:mi></mml:math> th order<br>iteration for finding generalized inverses. Applied Mathematics Letters, 2014, 28, 77-81. | 2.7 | 13        |
| 61 | Pricing multi-asset option problems: a Chebyshev pseudo-spectral method. BIT Numerical Mathematics, 2019, 59, 243-270.                                                                                                                                                                  | 2.0 | 13        |
| 62 | On the computation of weighted Moore–Penrose inverse using a high-order matrix method.<br>Computers and Mathematics With Applications, 2013, 66, 2344-2351.                                                                                                                             | 2.7 | 12        |
| 63 | A Class of Steffensen-Type Iterative Methods for Nonlinear Systems. Journal of Applied Mathematics, 2014, 2014, 1-9.                                                                                                                                                                    | 0.9 | 12        |
| 64 | A computational method to price with transaction costs under the nonlinear Black–Scholes model.<br>Chaos, Solitons and Fractals, 2019, 127, 291-301.                                                                                                                                    | 5.1 | 12        |
| 65 | Optimal fourth-order iterative method free from derivative. Miskolc Mathematical Notes, 2011, 12, 255.                                                                                                                                                                                  | 0.6 | 12        |
| 66 | Two Optimal Eighth-Order Derivative-Free Classes of Iterative Methods. Abstract and Applied Analysis, 2012, 2012, 1-14.                                                                                                                                                                 | 0.7 | 11        |
| 67 | Novel Computational Iterative Methods with Optimal Order for Nonlinear Equations. Advances in Numerical Analysis, 2011, 2011, 1-10.                                                                                                                                                     | 0.2 | 10        |
| 68 | Finding the Moore–Penrose inverse by a new matrix iteration. Journal of Applied Mathematics and<br>Computing, 2015, 47, 33-48.                                                                                                                                                          | 2.5 | 10        |
| 69 | A multiquadric RBF–FD scheme for simulating the financial HHW equation utilizing exponential integrator. Calcolo, 2018, 55, 1.                                                                                                                                                          | 1.1 | 10        |
| 70 | Pricing options under stochastic volatility jump model: A stable adaptive scheme. Applied Numerical<br>Mathematics, 2019, 145, 69-89.                                                                                                                                                   | 2.1 | 10        |
| 71 | A new method for solving ill-conditioned linear systems. Opuscula Mathematica, 2013, 33, 337.                                                                                                                                                                                           | 0.8 | 10        |
| 72 | Computing Simple Roots by an Optimal Sixteenth-Order Class. Journal of Applied Mathematics, 2012, 2012, 1-13.                                                                                                                                                                           | 0.9 | 9         |

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A Numerical Method for Computing the Principal Square Root of a Matrix. Abstract and Applied Analysis, 2014, 2014, 1-7.                                                                                                                  | 0.7 | 9         |
| 74 | RBF-FD solution for a financial partial-integro differential equation utilizing the generalized multiquadric function. Computers and Mathematics With Applications, 2021, 82, 161-178.                                                   | 2.7 | 9         |
| 75 | New Third- and Sixth-Order Derivative-Free Techniques for Nonlinear Equations. Journal of<br>Mathematics Research, 2011, 3, .                                                                                                            | 0.1 | 8         |
| 76 | Interval Ostrowski-type methods with guaranteed convergence. Annali Dell'Universita Di Ferrara, 2013, 59, 221-234.                                                                                                                       | 1.3 | 8         |
| 77 | A three-step iterative method for non-linear systems with sixth order of convergence. International<br>Journal of Computing Science and Mathematics, 2013, 4, 363.                                                                       | 0.3 | 8         |
| 78 | Multipoint Iterative Methods for Finding All the Simple Zeros in an Interval. Journal of Applied<br>Mathematics, 2014, 2014, 1-13.                                                                                                       | 0.9 | 8         |
| 79 | Constructing two-step iterative methods with and without memory. Computational Mathematics and Mathematical Physics, 2015, 55, 183-193.                                                                                                  | 0.8 | 8         |
| 80 | On a fourth-order matrix method for computing polar decomposition. Computational and Applied Mathematics, 2015, 34, 389-399.                                                                                                             | 1.3 | 8         |
| 81 | A family of Kurchatov-type methods and its stability. Applied Mathematics and Computation, 2017, 294, 264-279.                                                                                                                           | 2.2 | 8         |
| 82 | A Legendre-based computational method for solving a class of Itô stochastic delay differential equations. Numerical Algorithms, 2019, 80, 1267-1282.                                                                                     | 1.9 | 8         |
| 83 | A radial basis function — Hermite finite difference approach to tackle cash-or-nothing and<br>asset-or-nothing options. Journal of Computational and Applied Mathematics, 2020, 368, 112523.                                             | 2.0 | 8         |
| 84 | Efficient portfolio construction by means of CVaR and <i>k</i> â€means++ clustering analysis: Evidence from the NYSE. International Journal of Finance and Economics, 2022, 27, 3679-3693.                                               | 3.5 | 8         |
| 85 | On novel classes of iterative methods for solving nonlinear equations. Computational Mathematics and Mathematical Physics, 2012, 52, 203-210.                                                                                            | 0.8 | 7         |
| 86 | A Taylor-type numerical method for solving nonlinear ordinary differential equations. AEJ -<br>Alexandria Engineering Journal, 2013, 52, 543-550.                                                                                        | 6.4 | 7         |
| 87 | Solution of the heat equation in the castâ€mould heterogeneous domain using a weighted algorithm<br>based on the homotopy perturbation method. International Journal of Numerical Methods for Heat<br>and Fluid Flow, 2013, 23, 451-459. | 2.8 | 7         |
| 88 | New Mono- and Biaccelerator Iterative Methods with Memory for Nonlinear Equations. Abstract and Applied Analysis, 2014, 2014, 1-8.                                                                                                       | 0.7 | 7         |
| 89 | Several numerical methods for computing unitary polar factor of a matrix. Advances in Difference<br>Equations, 2016, 2016, .                                                                                                             | 3.5 | 7         |
| 90 | A Class of Kung–Traub-Type Iterative Algorithms for Matrix Inversion. International Journal of Applied and Computational Mathematics, 2016, 2, 641-648.                                                                                  | 1.6 | 7         |

| #   | Article                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Pricing foreign exchange options under stochastic volatility and interest rates using an RBF–FD<br>method. Journal of Computational Science, 2019, 37, 101028.                     | 2.9 | 7         |
| 92  | A fourth-order method for computing the sign function of a matrix with application in the<br>Yang–Baxter-like matrix equation. Computational and Applied Mathematics, 2019, 38, 1. | 2.2 | 7         |
| 93  | A family of Chaplygin-type solvers for Itô stochastic differential equations. Applied Mathematics and Computation, 2019, 340, 296-304.                                             | 2.2 | 7         |
| 94  | Asset pricing for an affine jumpâ€diffusion model using an FD method of lines on nonuniform meshes.<br>Mathematical Methods in the Applied Sciences, 2019, 42, 578-591.            | 2.3 | 7         |
| 95  | A family of high order iterations for calculating the sign of a matrix. Mathematical Methods in the Applied Sciences, 2020, 43, 8192-8203.                                         | 2.3 | 7         |
| 96  | Classifying a Lending Portfolio of Loans with Dynamic Updates via a Machine Learning Technique.<br>Mathematics, 2021, 9, 17.                                                       | 2.2 | 7         |
| 97  | An extension of the Tau numerical algorithm for the solution of linear and nonlinear Lane–Emden equations. Mathematical Methods in the Applied Sciences, 2013, 36, 674-682.        | 2.3 | 6         |
| 98  | Numerical solution of nonlinear equations by an optimal eighth-order class of iterative methods.<br>Annali Dell'Universita Di Ferrara, 2013, 59, 159-171.                          | 1.3 | 6         |
| 99  | Iterative Methods for Nonlinear Equations or Systems and Their Applications. Journal of Applied Mathematics, 2013, 2013, 1-2.                                                      | 0.9 | 6         |
| 100 | A New High-Order Stable Numerical Method for Matrix Inversion. Scientific World Journal, The, 2014, 2014, 1-10.                                                                    | 2.1 | 6         |
| 101 | A super-fast tri-parametric iterative method with memory. Applied Mathematics and Computation, 2016, 289, 486-491.                                                                 | 2.2 | 6         |
| 102 | Four-factor model of Quanto CDS with jumps-at-default and stochastic recovery. Journal of<br>Computational Science, 2021, 54, 101434.                                              | 2.9 | 6         |
| 103 | Two Classes of Iterative Schemes for Approximating Simple Roots. Journal of Applied Sciences, 2011, 11, 3442-3446.                                                                 | 0.3 | 6         |
| 104 | The existence and uniqueness of solution for linear system of mixed Volterra-Fredholm integral equations in Banach space. AIMS Mathematics, 2020, 5, 226-235.                      | 1.6 | 6         |
| 105 | Application of the Homotopy Perturbation Method to the Burgers Equation with Delay. Chinese Physics Letters, 2012, 29, 030202.                                                     | 3.3 | 5         |
| 106 | Efficient Iterative Methods with and without Memory Possessing High Efficiency Indices. Discrete<br>Dynamics in Nature and Society, 2014, 2014, 1-9.                               | 0.9 | 5         |
| 107 | An Algorithm for Computing Geometric Mean of Two Hermitian Positive Definite Matrices via Matrix<br>Sign. Abstract and Applied Analysis, 2014, 2014, 1-6.                          | 0.7 | 5         |
| 108 | A Matrix Iteration for Finding Drazin Inverse with Ninth-Order Convergence. Abstract and Applied<br>Analysis, 2014, 2014, 1-7.                                                     | 0.7 | 5         |

| #   | Article                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Some derivative-free solvers for numerical solution of SODEs. SeMA Journal, 2015, 68, 17-27.                                                                                              | 2.0 | 5         |
| 110 | Computing outer inverses by scaled matrix iterations. Journal of Computational and Applied Mathematics, 2016, 296, 89-101.                                                                | 2.0 | 5         |
| 111 | A new solution method for stochastic differential equations via collocation approach. International<br>Journal of Computer Mathematics, 2016, 93, 2079-2091.                              | 1.8 | 5         |
| 112 | Improving the Computational Efficiency of a Variant of Steffensen's Method for Nonlinear Equations.<br>Mathematics, 2019, 7, 306.                                                         | 2.2 | 5         |
| 113 | Pricing the financial Heston–Hull–White model with arbitrary correlation factors via an adaptive<br>FDM. Computers and Mathematics With Applications, 2019, 77, 1107-1123.                | 2.7 | 5         |
| 114 | European option valuation under the Bates PIDE in finance: A numerical implementation of the<br>Gaussian scheme. Discrete and Continuous Dynamical Systems - Series S, 2020, 13, 889-909. | 1.1 | 5         |
| 115 | On a high-order Gaussian radial basis function generated Hermite finite difference method and its application. Calcolo, 2021, 58, 1.                                                      | 1.1 | 5         |
| 116 | Robust cubically and quartically iterative techniques free from derivative. Proyecciones, 2011, 30, 149-161.                                                                              | 0.3 | 4         |
| 117 | Optimized Steffensen-Type Methods with Eighth-Order Convergence and High Efficiency Index.<br>International Journal of Mathematics and Mathematical Sciences, 2012, 2012, 1-18.           | 0.7 | 4         |
| 118 | An efficient twelfth-order iterative method for finding all the solutions of nonlinear equations.<br>Journal of Computational Methods in Sciences and Engineering, 2013, 13, 309-320.     | 0.2 | 4         |
| 119 | An Iterative Solver in the Presence and Absence of Multiplicity for Nonlinear Equations. Scientific<br>World Journal, The, 2013, 2013, 1-9.                                               | 2.1 | 4         |
| 120 | Two novel classes of two-step optimal methods for all the zeros in an interval. Afrika Matematika, 2014, 25, 307-321.                                                                     | 0.8 | 4         |
| 121 | On the extension of Householder's method for weighted Moore–Penrose inverse. Applied<br>Mathematics and Computation, 2014, 231, 407-413.                                                  | 2.2 | 4         |
| 122 | A Quartically Convergent Jarratt-Type Method for Nonlinear System of Equations. Algorithms, 2015, 8, 415-423.                                                                             | 2.1 | 4         |
| 123 | Some efficient seventh-order derivative-free families in root-finding. Opuscula Mathematica, 2013, 33, 163.                                                                               | 0.8 | 4         |
| 124 | Letter to the editor regarding the article by Khattri: derivative free algorithm for solving nonlinear equations. Computing (Vienna/New York), 2013, 95, 159-162.                         | 4.8 | 3         |
| 125 | Approximating the Inverse of a Square Matrix with Application in Computation of the Moore-Penrose<br>Inverse. Journal of Applied Mathematics, 2014, 2014, 1-8.                            | 0.9 | 3         |
| 126 | A Novel Iterative Method for Polar Decomposition and Matrix Sign Function. Discrete Dynamics in Nature and Society, 2015, 2015, 1-11.                                                     | 0.9 | 3         |

| #   | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Factorizations of hyperpower family of iterative methods via least squares approach. Computational and Applied Mathematics, 2018, 37, 3226-3240.                                                                     | 1.3 | 3         |
| 128 | Efficient Semi-Discretization Techniques for Pricing European and American Basket Options.<br>Computational Economics, 2019, 53, 1487-1508.                                                                          | 2.6 | 3         |
| 129 | How to construct a fourth-order scheme for Heston-Hull-White equation?. AIP Conference<br>Proceedings, 2019, , .                                                                                                     | 0.4 | 3         |
| 130 | An optimized Steffensen-type iterative method with memory associated with annuity calculation.<br>European Physical Journal Plus, 2019, 134, 1.                                                                      | 2.6 | 3         |
| 131 | A revisit of stochastic theta method with some improvements. Filomat, 2017, 31, 585-596.                                                                                                                             | 0.5 | 3         |
| 132 | On an improved computational solution for the 3D HCIR PDE in finance. Analele Stiintifice Ale<br>Universitatii Ovidius Constanta, Seria Matematica, 2019, 27, 207-230.                                               | 0.3 | 3         |
| 133 | A Numerical Algorithm for Solving Nonlinear Delay Volterra Integral Equations by Means of<br>Homotopy Perturbation Method. International Journal of Nonlinear Sciences and Numerical<br>Simulation, 2011, 12, 15-21. | 1.0 | 2         |
| 134 | An Inversion-Free Method for Finding Positive Definite Solution of a Rational Matrix Equation.<br>Scientific World Journal, The, 2014, 2014, 1-5.                                                                    | 2.1 | 2         |
| 135 | New class of eighth-order iterative zero-finders and their basins of attraction. Afrika Matematika, 2014, 25, 67-79.                                                                                                 | 0.8 | 2         |
| 136 | Recent Theories and Applications in Approximation Theory. Scientific World Journal, The, 2015, 2015, 1-2.                                                                                                            | 2.1 | 2         |
| 137 | Construction of some accelerated methods for solving scalar stochastic differential equations.<br>International Journal of Computing Science and Mathematics, 2016, 7, 537.                                          | 0.3 | 2         |
| 138 | A stable local radial basis function method for option pricing problem under the Bates model.<br>Numerical Methods for Partial Differential Equations, 2019, 35, 1035-1055.                                          | 3.6 | 2         |
| 139 | Managing the risk based on entropic value-at-risk under a normal-Rayleigh distribution. Applied Mathematics and Computation, 2021, 402, 126129.                                                                      | 2.2 | 2         |
| 140 | Numerical Analysis of Novel Finite Difference Methods. Mathematics in Industry, 2017, , 171-214.                                                                                                                     | 0.3 | 2         |
| 141 | A new Analytical Solution Procedure for the Motion of a Spherical Particle in a Plane Couette Flow.<br>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2013, 68, 319-326.                   | 1.5 | 1         |
| 142 | Construction of some accelerated methods for solving scalar stochastic differential equations.<br>International Journal of Computing Science and Mathematics, 2016, 7, 537.                                          | 0.3 | 1         |
| 143 | An Efficient Numerical Scheme for the Solution of a Stochastic Volatility Model Including<br>Contemporaneous Jumps in Finance. International Journal of Computational Methods, 0, , .                                | 1.3 | 1         |
| 144 | Exploiting higher computational efficiency index for computing outer generalized inverses. Applied<br>Numerical Mathematics, 2022, 175, 18-28.                                                                       | 2.1 | 1         |

| #   | Article                                                                                                                                                                        | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | On an inversion-free algorithm for the nonlinear matrix problem χ <sup>α</sup> A* χβ A + B * χ <sup>γ</sup><br>B = I. International Journal of Computer Mathematics, 0, , 1-0. | 1.8 | 1         |
| 146 | Iterative Methods and Dynamics for Nonlinear Problems. Discrete Dynamics in Nature and Society, 2017, 2017, 1-1.                                                               | 0.9 | 0         |
| 147 | Option pricing under a financial model with stochastic interest rate. AIP Conference Proceedings, 2019, , .                                                                    | 0.4 | 0         |