Fazlollah Soleymani

List of Publications by Year in descending order

[^0]
A real-time mathematical computer method for potato inspection using machine vision. Computers and

Mathematics With Applications, 2012, 63, 268-279. \quad| A new Bernoulli matrix method for solving high-order linear and nonlinear Fredholm |
| :--- |
| integro-differential equations with piecewise intervals. Applied Mathematics and Computation, 2012, |
| $219,482-497$. |

An iterative method for computing the approximate inverse of a square matrix and the
Mooreấ"Penrose inverse of a non-square matrix. Applied Mathematics and Computation, 2013, 224,
$671-680$.24 Several iterative methods with memory using self-accelerators. Applied Mathematics andComputation, 2015, 254, 452-458.
25 Accurate fourteenth-order methods for solving nonlinear equations. Numerical Algorithms, 2011, 58,

$513-527$.\quad| Tau approximate solution of weakly singular Volterra integral equations. Mathematical and Computer |
| :--- |
| Modelling, 2013, 57, 494-502. |

27 Improved numerical solution of multi-asset option pricing problem: A localized RBF-FD approach. Chaos, Solitons and Fractals, 2019, 119, 298-309.Numerically stable improved Chebyshevấ"Halley type schemes for matrix sign function. Journal of
1.1 23
Computational and Applied Mathematics, 2017, 318, 189-198.
A Higher Order Iterative Method for Computing the Drazin Inverse. Scientific World Journal, The,
$0.8 \quad 22$
$29 \quad \begin{aligned} & \text { A Higher Order Iter } \\ & 2013,2013,1-11 .\end{aligned}$0.822
$30 \quad$ Basin0.4221.12131 nonlinear PDEs. Numerical Algorithms, 2014, 67, 223-242.
A fast convergent numerical method for matrix sign function with application in SDEs. Journal of 1.1 21 Computational and Applied Mathematics, 2015, 282, 167-178.
0.4 21On hyperpower family of iterations for computing outer inverses possessing high efficiencies. LinearAlgebra and Its Applications, 2015, 484, 477-495.An efficient computation of generalized inverse of a matrix. Applied Mathematics and Computation,2018, 316, 89-101.

39	A Rapid Numerical Algorithm to Compute Matrix Inversion. International Journal of Mathematics and Mathematical Sciences, 2012, 2012, 1-11.	0.3	19
40	ON A FAST ITERATIVE METHOD FOR APPROXIMATE INVERSE OF MATRICES. Communications of the Korean Mathematical Society, 2013, 28, 407-418.	0.2	19
41	A Class of Three-Step Derivative-Free Root Solvers with Optimal Convergence Order. Journal of Applied Mathematics, 2012, 2012, 1-15.	0.4	18
42	Higher order derivative-free iterative methods with and without memory for systems of nonlinear equations. Applied Mathematics and Computation, 2017, 314, 199-211.	1.4	18
43	Some optimal iterative methods and their with memory variants. Journal of the Egyptian Mathematical Society, 2013, 21, 133-141.	0.6	17

44 An improved Schulz-type iterative method for matrix inversion with application. Transactions of the Institute of Measurement and Control, 2014, 36, 983-991.

45	A fast convergent iterative solver for approximate inverse of matrices. Numerical Linear Algebra With Applications, 2014, 21, 439-452.	0.9	17
46	Iterative methods for nonlinear systems associated with finite difference approach in stochastic differential equations. Numerical Algorithms, 2016, 71, 89-102.	1.1	17
47	The Laplace Homotopy Analysis Method for Solving a General Fractional Diffusion Equation Arising in Nano-Hydrodynamics. Journal of Computational and Theoretical Nanoscience, 2013, 10, 33-36.	0.4	16
48	Regarding the accuracy of optimal eighth-order methods. Mathematical and Computer Modelling, 2011, 53, 1351-1357.	2.0	15
49	Robustness of Operational Matrices of Differentiation for Solving State-Space Analysis and Optimal Control Problems. Abstract and Applied Analysis, 2013, 2013, 1-9.	0.3	15

50 An efficient and stable Newton-type iterative method for computing generalized inverse AT, S (2) 1.1 15
\$A_\{T,S\}^\{(2)\}\$. Numerical Algorithms, 2015, 69, 569-578.
$0.6 \quad 14$
A General Three-Step Class of Optimal Iterations for Nonlinear Equations. Mathematical Problems in $51 \quad$ Engineering, 2011, 2011, 1-10.0.614
Construction of Optimal Derivative-Free Techniques without Memory. Journal of Applied Mathematics,

55 An efficient matrix iteration for computing weighted Mooreâ€"Penrose inverse. Applied Mathematics
and Computation, 2014, 226, 441-454.

A mixed derivative terms removing method in multi-asset option pricing problems. Applied Mathematics Letters, 2016, 60, 108-114.

A Local Radial Basis Function Method for High-Dimensional American Option Pricing Problems. Mathematical Modelling and Analysis, 2018, 23, 117-138.

Revisit of Jarratt method for solving nonlinear equations. Numerical Algorithms, 2011, 57, 377-388.
1.1

Approximating the Matrix Sign Function Using a Novel Iterative Method. Abstract and Applied Analysis, 2014, 2014, 1-9.

A note on the stability of a<mml:math xmlns:mml="http:/|www.w3.org/1998/Math/MathML"
60 altimg="si1.gif" display="inline" overflow="scroll">mml:mip</mml:mi></mml:math>th order iteration for finding generalized inverses. Applied Mathematics Letters, 2014, 28, 77-81.

61 Pricing multi-asset option problems: a Chebyshev pseudo-spectral method. BIT Numerical Mathematics, 2019, 59, 243-270.

On the computation of weighted Mooreâ $€$ "Penrose inverse using a high-order matrix method.
Computers and Mathematics With Applications, 2013, 66, 2344-2351.

A Class of Steffensen-Type Iterative Methods for Nonlinear Systems. Journal of Applied Mathematics,
2014, 2014, 1-9.

A computational method to price with transaction costs under the nonlinear Blackâ€"Scholes model.
Chaos, Solitons and Fractals, 2019, 127, 291-301.

65 Optimal fourth-order iterative method free from derivative. Miskolc Mathematical Notes, 2011, 12, 255.
0.3

12

Two Optimal Eighth-Order Derivative-Free Classes of Iterative Methods. Abstract and Applied Analysis, 2012, 2012, 1-14.

Novel Computational Iterative Methods with Optimal Order for Nonlinear Equations. Advances in
0.2

10
Numerical Analysis, 2011, 2011, 1-10.

Finding the Mooreâ€"Penrose inverse by a new matrix iteration. Journal of Applied Mathematics and Computing, 2015, 47, 33-48.

A multiquadric RBFâ€"FD scheme for simulating the financial HHW equation utilizing exponential integrator. Calcolo, 2018, 55, 1.

Pricing options under stochastic volatility jump model: A stable adaptive scheme. Applied Numerical Mathematics, 2019, 145, 69-89.

73 A Numerical Method for Computing the Principal Square Root of a Matrix. Abstract and Applied

RBF-FD solution for a financial partial-integro differential equation utilizing the generalized multiquadric function. Computers and Mathematics With Applications, 2021, 82, 161-178.

New Third- and Sixth-Order Derivative-Free Techniques for Nonlinear Equations. Journal of Mathematics Research, 2011, 3, .

Interval Ostrowski-type methods with guaranteed convergence. Annali Dell'Universita Di Ferrara, 2013, 59, 221-234.

A three-step iterative method for non-linear systems with sixth order of convergence. International
Journal of Computing Science and Mathematics, 2013, 4, 363.

Multipoint Iterative Methods for Finding All the Simple Zeros in an Interval. Journal of Applied
Mathematics, 2014, 2014, 1-13.

Constructing two-step iterative methods with and without memory. Computational Mathematics and
Mathematical Physics, 2015, 55, 183-193.

On a fourth-order matrix method for computing polar decomposition. Computational and Applied
Mathematics, 2015, 34, 389-399.

A family of Kurchatov-type methods and its stability. Applied Mathematics and Computation, 2017, 294,
264-279.

A Legendre-based computational method for solving a class of Itã́stochastic delay differential
equations. Numerical Algorithms, 2019, 80, 1267-1282.

A radial basis function â€" Hermite finite difference approach to tackle cash-or-nothing and
83 asset-or-nothing options. Journal of Computational and Applied Mathematics, 2020, 368, 112523.

Efficient portfolio construction by means of CVaR and $\langle\mathrm{i}\rangle \mathrm{k}</ \mathrm{i}\rangle \mathrm{a} € m e a n s++$ clustering analysis: Evidence
from the NYSE. International Journal of Finance and Economics, 2022, 27, 3679-3693.

On novel classes of iterative methods for solving nonlinear equations. Computational Mathematics
and Mathematical Physics, 2012, 52, 203-210.

A Taylor-type numerical method for solving nonlinear ordinary differential equations. AEJ -
Alexandria Engineering Journal, 2013, 52, 543-550.

Solution of the heat equation in the castâ $€$ mould heterogeneous domain using a weighted algorithm
87 based on the homotopy perturbation method. International Journal of Numerical Methods for Heat
and Fluid Flow, 2013, 23, 451-459.

New Mono- and Biaccelerator Iterative Methods with Memory for Nonlinear Equations. Abstract and Applied Analysis, 2014, 2014, 1-8.

Several numerical methods for computing unitary polar factor of a matrix. Advances in Difference
Equations, 2016, 2016, .
3.5

A Class of Kungâ€"Traub-Type Iterative Algorithms for Matrix Inversion. International Journal of Applied
and Computational Mathematics, 2016, 2, 641-648.

93 A family of Chaplygin-type solvers for ltÃ' stochastic differential equations. Applied Mathematics and

95	A family of high order iterations for calculating the sign of a matrix. Mathematical Methods in the Applied Sciences, 2020, 43, 8192-8203.	1.2
96	Classifying a Lending Portfolio of Loans with Dynamic Updates via a Machine Learning Technique. Mathematics, 2021, 9, 17.	1.1
97	An extension of the Tau numerical algorithm for the solution of linear and nonlinear Laneâ€"Emden equations. Mathematical Methods in the Applied Sciences, 2013, 36, 674-682.	1.2
98	Numerical solution of nonlinear equations by an optimal eighth-order class of iterative methods. Annali Dell'Universita Di Ferrara, 2013, 59, 159-171.	0.7
99	Iterative Methods for Nonlinear Equations or Systems and Their Applications. Journal of Applied Mathematics, 2013, 2013, 1-2.	0.4
100	A New High-Order Stable Numerical Method for Matrix Inversion. Scientific World Journal, The, 2014, 2014, 1-10.	0.8

101 A super-fast tri-parametric iterative method with memory. Applied Mathematics and Computation, 2016,
289, 486-491.

1.46

Two Classes of Iterative Schemes for Approximating Simple Roots. Journal of Applied Sciences, 2011, 11, 3442-3446.

The existence and uniqueness of solution for linear system of mixed Volterra-Fredholm integral equations in Banach space. AIMS Mathematics, 2020, 5, 226-235.

109 Some derivative-free solvers for numerical solution of SODEs. SeMA Journal, 2015, 68, 17-27.
$1.0 \quad 5$

Computing outer inverses by scaled matrix iterations. Journal of Computational and Applied
1.1 Mathematics, 2016, 296, 89-101.

A new solution method for stochastic differential equations via collocation approach. International
Journal of Computer Mathematics, 2016, 93, 2079-2091.

Improving the Computational Efficiency of a Variant of Steffensenâ $€^{\mathrm{TM}} \mathrm{S}$ Method for Nonlinear Equations.
Mathematics, 2019, 7, 306.

Pricing the financial Hestonâ€"Hullâ $€^{\text {" White model with arbitrary correlation factors via an adaptive }}$ FDM. Computers and Mathematics With Applications, 2019, 77, 1107-1123.

European option valuation under the Bates PIDE in finance: A numerical implementation of the Gaussian scheme. Discrete and Continuous Dynamical Systems - Series S, 2020, 13, 889-909.
0.65

On a high-order Gaussian radial basis function generated Hermite finite difference method and its
application. Calcolo, 2021, 58, 1.
$0.6 \quad 5$

116 Robust cubically and quartically iterative techniques free from derivative. Proyecciones, 2011, 30, 149-161.

117 Optimized Steffensen-Type Methods with Eighth-Order Convergence and High Efficiency Index.
117 International Journal of Mathematics and Mathematical Sciences, 2012, 2012, 1-18.

118 An efficient twelfth-order iterative method for finding all the solutions of nonlinear equations.
Journal of Computational Methods in Sciences and Engineering, 2013, 13, 309-320.
0.1
$0.1 \quad 4$

119 An Iterative Solver in the Presence and Absence of Multiplicity for Nonlinear Equations. Scientific
World Journal, The, 2013, 2013, 1-9.
0.8

Two novel classes of two-step optimal methods for all the zeros in an interval. Afrika Matematika,
2014, 25, 307-321.
0.4

On the extension of Householderâ $€^{T M} s$ method for weighted Mooreâ $€^{\prime \prime}$ Penrose inverse. Applied Mathematics and Computation, 2014, 231, 407-413.

A Quartically Convergent Jarratt-Type Method for Nonlinear System of Equations. Algorithms, 2015, 8, 415-423.

Some efficient seventh-order derivative-free families in root-finding. Opuscula Mathematica, 2013, 33, 163.

Letter to the editor regarding the article by Khattri: derivative free algorithm for solving nonlinear equations. Computing (Vienna/New York), 2013, 95, 159-162.

Approximating the Inverse of a Square Matrix with Application in Computation of the Moore-Penrose
 Inverse. Journal of Applied Mathematics, 2014, 2014, 1-8.
 0.4

A Novel Iterative Method for Polar Decomposition and Matrix Sign Function. Discrete Dynamics in
Nature and Society, 2015, 2015, 1-11.

Factorizations of hyperpower family of iterative methods via least squares approach. Computational
and Applied Mathematics, 2018, 37, 3226-3240.

Efficient Semi-Discretization Techniques for Pricing European and American Basket Options. Computational Economics, 2019, 53, 1487-1508.

How to construct a fourth-order scheme for Heston-Hull-White equation?. AIP Conference
$129 \begin{aligned} & \text { How to construct a fo } \\ & \text { Proceedings, 2019, , . }\end{aligned}$

An optimized Steffensen-type iterative method with memory associated with annuity calculation.
$130 \quad$ An optimized Steffensen-type iterative method
1.2
. $3 \quad 3$

131 A revisit of stochastic theta method with some improvements. Filomat, 2017, 31, 585-596.
$0.2 \quad 3$

On an improved computational solution for the 3D HCIR PDE in finance. Analele Stiintifice Ale Universitatii Ovidius Constanta, Seria Matematica, 2019, 27, 207-230.

A Numerical Algorithm for Solving Nonlinear Delay Volterra Integral Equations by Means of
133 Homotopy Perturbation Method. International Journal of Nonlinear Sciences and Numerical Simulation, 2011, 12, 15-21.

An Inversion-Free Method for Finding Positive Definite Solution of a Rational Matrix Equation.
Scientific World Journal, The, 2014, 2014, 1-5.
0.8

New class of eighth-order iterative zero-finders and their basins of attraction. Afrika Matematika,
2014, 25, 67-79.

Recent Theories and Applications in Approximation Theory. Scientific World Journal, The, 2015, 2015, 1-2.

137 Construction of some accelerated methods for solving scalar stochastic differential equations.
International Journal of Computing Science and Mathematics, 2016, 7, 537.
0.2

A stable local radial basis function method for option pricing problem under the Bates model.
Numerical Methods for Partial Differential Equations, 2019, 35, 1035-1055.

Managing the risk based on entropic value-at-risk under a normal-Rayleigh distribution. Applied Mathematics and Computation, 2021, 402, 126129.

140 Numerical Analysis of Novel Finite Difference Methods. Mathematics in Industry, 2017, , 171-214.
$0.1 \quad 2$

141 A new Analytical Solution Procedure for the Motion of a Spherical Particle in a Plane Couette Flow.
Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2013, 68, 319-326.

Construction of some accelerated methods for solving scalar stochastic differential equations.
International Journal of Computing Science and Mathematics, 2016, 7, 537.
0.2

An Efficient Numerical Scheme for the Solution of a Stochastic Volatility Model Including
Contemporaneous Jumps in Finance. International Journal of Computational Methods, 0, , .
0.8

Exploiting higher computational efficiency index for computing outer generalized inverses. Applied Numerical Mathematics, 2022, 175, 18-28.

[^0]: Source: https:/|exaly.com/author-pdf/5700785/publications.pdf
 Version: 2024-02-01

