Tatiana Maron-Gutierrez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5700455/publications.pdf

Version: 2024-02-01

623188 940134 17 529 14 16 citations g-index h-index papers 17 17 17 677 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Bone marrow-derived mononuclear cell therapy in experimental pulmonary and extrapulmonary acute lung injury. Critical Care Medicine, 2010, 38, 1733-1741.	0.4	60
2	Effects of Mesenchymal Stem Cell Therapy on the Time Course of Pulmonary Remodeling Depend on the Etiology of Lung Injury in Mice. Critical Care Medicine, 2013, 41, e319-e333.	0.4	58
3	DJ-1/PARK7 Impairs Bacterial Clearance in Sepsis. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 889-905.	2.5	55
4	ATF3 Protects Pulmonary Resident Cells from Acute and Ventilator-Induced Lung Injury by Preventing Nrf2 Degradation. Antioxidants and Redox Signaling, 2015, 22, 651-668.	2.5	37
5	Protective function of DJ-1/PARK7 in lipopolysaccharide and ventilator-induced acute lung injury. Redox Biology, 2021, 38, 101796.	3.9	37
6	Mesenchymal stromal (stem) cell therapy modulates miR-193b-5p expression to attenuate sepsis-induced acute lung injury. European Respiratory Journal, 2022, 59, 2004216.	3.1	36
7	Infectious disease-associated encephalopathies. Critical Care, 2021, 25, 236.	2.5	34
8	Bone Marrow Mononuclear Cell Therapy Led to Alveolar-Capillary Membrane Repair, Improving Lung Mechanics in Endotoxin-Induced Acute Lung Injury. Cell Transplantation, 2010, 19, 965-971.	1.2	33
9	Cell-based therapies for the acute respiratory distress syndrome. Current Opinion in Critical Care, 2014, 20, 122-131.	1.6	31
10	Effects of bone marrow-derived mononuclear cells on airway and lung parenchyma remodeling in a murine model of chronic allergic inflammation. Respiratory Physiology and Neurobiology, 2011, 175, 153-163.	0.7	30
11	Mesenchymal Stromal Cells Protect the Blood-Brain Barrier, Reduce Astrogliosis, and Prevent Cognitive and Behavioral Alterations in Surviving Septic Mice. Critical Care Medicine, 2020, 48, e290-e298.	0.4	27
12	Early and late effects of bone marrow-derived mononuclear cell therapy on lung and distal organs in experimental sepsis. Respiratory Physiology and Neurobiology, 2011, 178, 304-314.	0.7	25
13	Expanded endothelial progenitor cells mitigate lung injury in septic mice. Stem Cell Research and Therapy, 2015, 6, 230.	2.4	24
14	Insult-dependent effect of bone marrow cell therapy on inflammatory response in a murine model of extrapulmonary acute respiratory distress syndrome. Stem Cell Research and Therapy, 2013, 4, 123.	2.4	17
15	Mesenchymal stromal cells protect against vascular damage and depression-like behavior in mice surviving cerebral malaria. Stem Cell Research and Therapy, 2020, 11, 367.	2.4	13
16	Microglial Priming in Infections and Its Risk to Neurodegenerative Diseases. Frontiers in Cellular Neuroscience, $0,16,.$	1.8	9
17	New perspectives for mesenchymal stromal cells as an adjuvant therapy for infectious disease-associated encephalopathies. Neural Regeneration Research, 2022, 17, 48.	1.6	3