Zbigniew Mazur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5700254/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biochar-Assisted Phytostabilization for Potentially Toxic Element Immobilization. Sustainability, 2022, 14, 445.	3.2	7
2	Environmental impact assessment of risk elements from railway transport with the use of pollution indices, a biotest and bioindicators. Human and Ecological Risk Assessment (HERA), 2021, 27, 517-540.	3.4	9
3	Can the Application of Municipal Sewage Sludge Compost in the Aided Phytostabilization Technique Provide an Effective Waste Management Method?. Energies, 2021, 14, 1984.	3.1	10
4	Insight into metal immobilization and microbial community structure in soil from a steel disposal dump phytostabilized with composted, pyrolyzed or gasified wastes. Chemosphere, 2021, 272, 129576.	8.2	39
5	Recycling of Blast Furnace and Coal Slags in Aided Phytostabilisation of Soils Highly Polluted with Heavy Metals. Energies, 2021, 14, 4300.	3.1	1
6	Assisted phytostabilization of soil from a former military area with mineral amendments. Ecotoxicology and Environmental Safety, 2020, 188, 109934.	6.0	21
7	Successful Outcome of Phytostabilization in Cr(VI) Contaminated Soils Amended with Alkalizing Additives. International Journal of Environmental Research and Public Health, 2020, 17, 6073.	2.6	6
8	Composting versus mechanical–biological treatment: Does it really make a difference in the final product parameters and maturity. Waste Management, 2020, 106, 173-183.	7.4	23
9	Immobilization of Potentially Toxic Elements (PTE) by Mineral-Based Amendments: Remediation of Contaminated Soils in Post-Industrial Sites. Minerals (Basel, Switzerland), 2020, 10, 87.	2.0	16
10	Novel combined amendments for sustainable remediation of the Pb-contaminated soil. AIMS Environmental Science, 2020, 7, 1-12.	1.4	2
11	Valorization of Fish Waste Compost as a Fertilizer for Agricultural Use. Waste and Biomass Valorization, 2019, 10, 2537-2545.	3.4	64
12	Pilot Scale Use of Compost Combined with Sorbents to Phytostabilize Ni-Contaminated Soil Using Lolium perenne L. Waste and Biomass Valorization, 2019, 10, 1585-1595.	3.4	12
13	Using Mosses as Bioindicators of Potentially Toxic Element Contamination in Ecologically Valuable Areas Located in the Vicinity of a Road: A Case Study. International Journal of Environmental Research and Public Health, 2019, 16, 3963.	2.6	8
14	The combined effect of phytostabilization and different amendments on remediation of soils from post-military areas. Science of the Total Environment, 2019, 688, 37-45.	8.0	36
15	The applicability of compost, zeolite and calcium oxide in assisted remediation of acidic soil contaminated with Cr(III) and Cr(VI). Environmental Science and Pollution Research, 2019, 26, 21351-21362.	5.3	20
16	Soils from an iron and steel scrap storage yard remediated with aided phytostabilization. Land Degradation and Development, 2019, 30, 202-211.	3.9	8
17	Assessment and Evaluation of Heavy Metals Removal from Landfill Leachate by Pleurotus ostreatus. Waste and Biomass Valorization, 2018, 9, 503-511.	3.4	39
18	Ecotoxicity of In-Situ Produced Compost Intended for Landfill Restoration. Environments - MDPI, 2018, 5, 111.	3.3	4

ZBIGNIEW MAZUR

#	Article	IF	CITATIONS
19	CHEMICAL COMPOSITION OF SPRING RAPESEED GROWN IN COPPER- CONTAMINATED SOIL AMENDED WITH HALLOYSITE AND ZEOLITE. Journal of Ecological Engineering, 2017, 18, 38-43.	1.1	2
20	Quality of Water in the Road Drainage Systems in the Warsaw Agglomeration, Poland. Water (Switzerland), 2016, 8, 429.	2.7	21
21	Co-remediation of Ni-contaminated soil by halloysite and Indian mustard (<i>Brassica juncea</i> L.). Clay Minerals, 2016, 51, 489-497.	0.6	16
22	Assessment of the effect of reactive materials on the content of selected elements in Indian mustard grown in Cu-contaminated soils. Journal of Water and Land Development, 2016, 28, 53-60.	0.9	8
23	CONTENT OF SELECTED HEAVY METALS IN NI-CONTAMINATED SOIL FOLLOWING THE APPLICATION OF HALLOYSITE AND ZEOLITE. Journal of Ecological Engineering, 2016, 17, 125-133.	1.1	27
24	EFFECT OF REACTIVE MATERIALS ON THE CONTENT OF SELECTED ELEMENTS IN INDIAN MUSTARD GROWN IN CR(VI)-CONTAMINATED SOILS. Journal of Ecological Engineering, 2016, 17, 141-147.	1.1	4
25	Influence of Long-Term Fertilization on Phosphorus, Potassium, Magnesium, and Sulfur Content in Soil. Polish Journal of Environmental Studies, 2015, 24, 185-190.	1.2	10
26	EFFECT OF COMPOST FROM BY-PRODUCT OF THE FISHING INDUSTRY ON CROP YIELD AND MICROELEMENT CONTENT IN MAIZE. Journal of Ecological Engineering, 2015, 16, 168-175.	1.1	7
27	Effects of Long-Term Organic and Mineral Fertilizer Applications on Soil Nitrogen Content. Polish Journal of Environmental Studies, 2015, 24, 2073-2078.	1.2	4
28	The influence of long-term fertilization with slurry, manure and NPK on the soil content of trace elements. Journal of Elementology, 2015, , .	0.2	5
29	Organic Carbon Content and Its Fractions in Soils of Multi-Year Fertilization Experiments. Polish Journal of Environmental Studies, 0, 24, 1697-1703.	1.2	2