
Tadeu Luis Tiecher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5699877/publications.pdf Version: 2024-02-01

TADEU LUIS TIECHER

#	Article	IF	CITATIONS
1	Bioaccumulation and oxidative stress caused by pesticides in Cyprinus carpio reared in a rice-fish system. Science of the Total Environment, 2018, 626, 737-743.	8.0	148
2	Copper uptake, accumulation and physiological changes in adult grapevines in response to excess copper in soil. Plant and Soil, 2014, 374, 593-610.	3.7	101
3	Mobility of copper and zinc fractions in fungicide-amended vineyard sandy soils. Archives of Agronomy and Soil Science, 2014, 60, 609-624.	2.6	84
4	Tolerance and translocation of heavy metals in young grapevine (Vitis vinifera) grown in sandy acidic soil with interaction of high doses of copper and zinc. Scientia Horticulturae, 2017, 222, 203-212.	3.6	68
5	Intercropping of young grapevines with native grasses for phytoremediation of Cu-contaminated soils. Chemosphere, 2019, 216, 147-156.	8.2	64
6	High copper content in vineyard soils promotes modifications in photosynthetic parameters and morphological changes in the root system of †Red Niagara' plantlets. Plant Physiology and Biochemistry, 2018, 128, 89-98.	5.8	56
7	The potential of Zea mays L. in remediating copper and zinc contaminated soils for grapevine production. Geoderma, 2016, 262, 52-61.	5.1	52
8	Soil chemical properties related to acidity under successive pig slurry application. Revista Brasileira De Ciencia Do Solo, 2011, 35, 1827-1836.	1.3	45
9	Triggered antioxidant defense mechanism in maize grown in soil with accumulation of Cu and Zn due to intensive application of pig slurry. Ecotoxicology and Environmental Safety, 2013, 93, 145-155.	6.0	43
10	Nutrients in soil layers under no-tillage after successive pig slurry applications. Revista Brasileira De Ciencia Do Solo, 2013, 37, 157-167.	1.3	42
11	Soil solution concentrations and chemical species of copper and zinc in a soil with a history of pig slurry application and plant cultivation. Agriculture, Ecosystems and Environment, 2016, 216, 374-386.	5.3	42
12	Frações de fósforo no solo após sucessivas aplicações de dejetos de suÃnos em plantio direto. Pesquisa Agropecuaria Brasileira, 2010, 45, 593-602.	0.9	41
13	Physiological and nutritional status of black oat (Avena strigosa Schreb.) grown in soil with interaction of high doses of copper and zinc. Plant Physiology and Biochemistry, 2016, 106, 253-263.	5.8	37
14	Forms and accumulation of copper and zinc in a sandy typic hapludalf soil after long-term application of pig slurry and deep litter. Revista Brasileira De Ciencia Do Solo, 2013, 37, 812-824.	1.3	35
15	Effects of zinc addition to a copper-contaminated vineyard soil on sorption of Zn by soil and plant physiological responses. Ecotoxicology and Environmental Safety, 2016, 129, 109-119.	6.0	32
16	Biochemical changes in black oat (avena strigosa schreb) cultivated in vineyard soils contaminated with copper. Plant Physiology and Biochemistry, 2016, 103, 199-207.	5.8	32
17	The interaction of high copper and zinc doses in acid soil changes the physiological state and development of the root system in young grapevines (Vitis vinifera). Ecotoxicology and Environmental Safety, 2018, 148, 985-994.	6.0	31
18	Use of phosphorus fertilization and mycorrhization as strategies for reducing copper toxicity in young grapevines. Scientia Horticulturae, 2019, 248, 176-183.	3.6	30

TADEU LUIS TIECHER

#	Article	IF	CITATIONS
19	Pig slurry and nutrient accumulation and dry matter and grain yield in various crops. Revista Brasileira De Ciencia Do Solo, 2014, 38, 949-958.	1.3	29
20	Available content, surface runoff and leaching of phosphorus forms in a typic hapludalf treated with organic and mineral nutrient sources. Revista Brasileira De Ciencia Do Solo, 2014, 38, 544-556.	1.3	29
21	Nutrient transfers by leaching in a no-tillage system through soil treated with repeated pig slurry applications. Nutrient Cycling in Agroecosystems, 2013, 95, 115-131.	2.2	28
22	Copper availability assessment of Cu-contaminated vineyard soils using black oat cultivation and chemical extractants. Environmental Monitoring and Assessment, 2014, 186, 9051-9063.	2.7	27
23	Atributos quÃmicos de Latossolo após sucessivas aplicações de composto orgânico de dejeto lÃquido de suÃnos. Pesquisa Agropecuaria Brasileira, 2016, 51, 233-242.	0.9	25
24	Potential of vermicompost and limestone in reducing copper toxicity in young grapevines grown in Cu-contaminated vineyard soil. Chemosphere, 2019, 226, 421-430.	8.2	24
25	Growth and chemical changes in the rhizosphere of black oat (Avena strigosa) grown in soils contaminated with copper. Ecotoxicology and Environmental Safety, 2018, 163, 19-27.	6.0	23
26	Soil acidity and aluminum speciation affected by liming in the conversion of a natural pasture from the Brazilian Campos Biome into no-tillage system for grain production. Archives of Agronomy and Soil Science, 2020, 66, 138-151.	2.6	20
27	Effects of excess copper in vineyard soils on the mineral nutrition of potato genotypes. Food and Energy Security, 2013, 2, 49-69.	4.3	17
28	Effects of Rhizophagus clarus and P availability in the tolerance and physiological response of Mucuna cinereum to copper. Plant Physiology and Biochemistry, 2018, 122, 46-56.	5.8	15
29	Copper and zinc distribution and toxicity in †Jade' / †Genovesa' young peach tree. Scientia Horticulturae, 2020, 259, 108763.	3.6	15
30	Long-Term Effects of Animal Manures on Nutrient Recovery and Soil Quality in Acid Typic Hapludalf under No-Till Conditions. Agronomy, 2022, 12, 243.	3.0	15
31	Nitrogen Availability and Physiological Response of Corn After 12ÂYears with Organic and Mineral Fertilization. Journal of Soil Science and Plant Nutrition, 2020, 20, 979-989.	3.4	14
32	Forms of nitrogen and phosphorus transfer by runoff in soil under no-tillage with successive organic waste and mineral fertilizers applications. Agricultural Water Management, 2021, 248, 106779.	5.6	14
33	Phosphorus forms leached in a sandy Typic Hapludalf soil under no-tillage with successive pig slurry applications. Agricultural Water Management, 2020, 242, 106406.	5.6	13
34	Disponibilidade de nitrogênio de fontes minerais e orgânicas aplicadas em um Argissolo cultivado com videira. Revista Ceres, 2014, 61, 241-247.	0.4	12
35	Impact of Cu concentrations in nutrient solution on growth and physiological and biochemical parameters of beet and cabbage and human health risk assessment. Scientia Horticulturae, 2020, 272, 109558.	3.6	10
36	Ecotoxicological responses of Eisenia andrei exposed in field-contaminated soils by sanitary sewage. Ecotoxicology and Environmental Safety, 2021, 214, 112049.	6.0	10

TADEU LUIS TIECHER

#	Article	IF	CITATIONS
37	Structural changes in roots of peach rootstock cultivars grown in soil with high zinc content. Scientia Horticulturae, 2018, 237, 1-10.	3.6	9
38	Crop response to organic fertilization with supplementary mineral nitrogen. Revista Brasileira De Ciencia Do Solo, 2014, 38, 912-922.	1.3	8
39	Nitrogen fertilization of Cabernet Sauvignon grapevines: yield, total nitrogen content in the leaves and must composition. Acta Scientiarum - Agronomy, 2015, 37, 321.	0.6	8
40	Contribution of mineral N to young grapevine in the presence or absence of cover crops. Journal of Soil Science and Plant Nutrition, 2017, 17, 570-580.	3.4	8
41	Copper and Zinc in Rhizosphere Soil and Toxicity Potential in White Oats (Avena sativa) Grown in Soil with Long-Term Pig Manure Application. Water, Air, and Soil Pollution, 2019, 230, 1.	2.4	6
42	Dynamics of sulfate and basic cations in soil solution as affected by gypsum fertilization in an Ultisol of Southern Brazil. Archives of Agronomy and Soil Science, 2019, 65, 1998-2012.	2.6	6
43	Phosphorus accumulation in a southern Brazilian Ultisol amended with pig manure for nine years. Scientia Agricola, 2021, 78, .	1.2	6
44	Physiological responses of beet and cabbage plants exposed to copper and their potential insertion in human food chain. Environmental Science and Pollution Research, 2022, 29, 44186-44198.	5.3	5
45	Soil chemical properties and crop response to gypsum and limestone on a coarse-textured Ultisol under no-till in the Brazilian Pampa biome. Geoderma Regional, 2021, 25, e00372.	2.1	4
46	Tolerance and phytoremediation potential of grass species native to South American grasslands to copper-contaminated soils. International Journal of Phytoremediation, 2021, 23, 1-10.	3.1	4
47	Growth, biochemical response and nutritional status of Angico-Vermelho (<i>Parapiptadenia) Tj ETQq1 1 0.78431 International Journal of Phytoremediation, 2018, 20, 1380-1388.</i>	.4 rgBT 3.1	/Overlock 10 T 3
48	Diagnosis and management of nutrient constraints in grape. , 2020, , 693-710.		3
49	Increase in phosphorus concentration reduces the toxicity of copper in wheat roots (Triticum) Tj ETQq1 1 0.7843	14.rgB ⁻ 1.9	۲ /Ovgrlock 10
50	Physiological, Biochemical Changes, and Phytotoxicity Remediation in Agricultural Plant Species Cultivated in Soils Contaminated with Copper and Zinc. , 2018, , 29-76.		2
51	Eisenia andrei Behavioral and Antioxidative Responses to Excess of Copper in the Soil. Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	2
52	Determinação da fragilidade ambiental de bacia hidrográfica em relação à atividade suinÃcola utilizando SIG. Ciência E Natura, 0, 40, 33.	0.0	2
53	Aquatic biomonitoring: Importance, challenges, and limitations. Integrated Environmental Assessment and Management, 2022, 18, 597-598.	2.9	2
54	Calcium applications on â€~Fuji Suprema' and â€~Maxi Gala' apple trees: fruit quality at harvest and after cold storage. Bragantia, 0, 81, .	1.3	1

#	Article	IF	CITATIONS
55	Analysis of Pesticide Residues in Biotic Matrices. Sustainable Agriculture Reviews, 2021, , 351-365.	1.1	ο
56	Dynamics of spatial and temporal growth of the root system of grapevine (Vitis vinifera L.) under nitrogen levels in sandy soil in subtropical climate. Scientia Horticulturae, 2022, 303, 111223.	3.6	0