Giovanni Fiorentini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5699812/publications.pdf

Version: 2024-02-01

144 papers 6,231 citations

38 h-index 78623 77 g-index

145 all docs 145 docs citations

145 times ranked 3502 citing authors

#	Article	IF	CITATIONS
1	Comprehensive geoneutrino analysis with Borexino. Physical Review D, 2020, 101, .	1.6	42
2	GIGJ: A Crustal Gravity Model of the Guangdong Province for Predicting the Geoneutrino Signal at the JUNO Experiment. Journal of Geophysical Research: Solid Earth, 2019, 124, 4231-4249.	1.4	16
3	LARAMED: A Laboratory for Radioisotopes of Medical Interest. Molecules, 2019, 24, 20.	1.7	32
4	Accuracy of Flight Altitude Measured with Low-Cost GNSS, Radar and Barometer Sensors: Implications for Airborne Radiometric Surveys. Sensors, 2017, 17, 1889.	2.1	33
5	Geoneutrinos and reactor antineutrinos at SNO+. Journal of Physics: Conference Series, 2016, 718, 062003.	0.3	6
6	Uranium distribution in the Variscan Basement of Northeastern Sardinia. Journal of Maps, 2016, 12, 1029-1036.	1.0	16
7	Geo-neutrinos from 1353 Days with the Borexino Detector. Physics Procedia, 2015, 61, 340-344.	1.2	1
8	Reference worldwide model for antineutrinos from reactors. Physical Review D, 2015, 91, .	1.6	32
9	Geo-neutrinos and Borexino. Physics of Particles and Nuclei, 2015, 46, 174-181.	0.2	1
10	Solar neutrino with Borexino: Results and perspectives. Physics of Particles and Nuclei, 2015, 46, 166-173.	0.2	4
11	Spectroscopy of geoneutrinos from 2056 days of Borexino data. Physical Review D, 2015, 92, .	1.6	77
12	Total natural radioactivity, Veneto (Italy). Journal of Maps, 2015, 11, 545-551.	1.0	16
13	The worldwide NORM production and a fully automated gamma-ray spectrometer for their characterization. Journal of Radioanalytical and Nuclear Chemistry, 2013, 295, 445-457.	0.7	62
14	Total natural radioactivity, Tuscany, Italy. Journal of Maps, 2013, 9, 438-443.	1.0	11
15	First characterisation of natural radioactivity in building materials manufactured in Albania. Radiation Protection Dosimetry, 2013, 155, 217-223.	0.4	19
16	Measurement of geo-neutrinos from 1353 days of Borexino. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2013, 722, 295-300.	1.5	92
17	The Earth $\hat{E}^{1}\!\!/\!\!4$ s mantle and geoneutrinos. Nuclear Physics, Section B, Proceedings Supplements, 2013, 237-238, 82-84.	0.5	О
18	A multivariate spatial interpolation of airborne \hat{l}^3 -ray data using the geological constraints. Remote Sensing of Environment, 2013, 137, 1-11.	4.6	23

#	Article	IF	CITATIONS
19	The cosmological sup > 7 < /sup > Li problem from a nuclear physics perspective. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 030-030.	1.9	60
20	Mantle geoneutrinos in KamLAND and Borexino. Physical Review D, 2012, 86, .	1.6	31
21	A new FSA approach for in situ \hat{I}^3 ray spectroscopy. Science of the Total Environment, 2012, 414, 639-645.	3.9	47
22	U and Th content in the Central Apennines continental crust: A contribution to the determination of the geo-neutrinos flux at LNGS. Geochimica Et Cosmochimica Acta, 2011, 75, 2271-2294.	1.6	39
23	Neutrino interactions at few MeV: results from Borexino at Gran Sasso. Nuclear Physics, Section B, Proceedings Supplements, 2011, 212-213, 121-127.	0.5	0
24	Geo-Neutrinos And Radiogenic Contribution To Earth's Heat Flow. , 2010, , .		2
25	Observation of geo-neutrinos. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2010, 687, 299-304.	1.5	187
26	Nuclear physics inputs needed for geo-neutrino studies. Journal of Physics: Conference Series, 2008, 120, 052007.	0.3	0
27	Geo-neutrinos and earth's interior. Physics Reports, 2007, 453, 117-172.	10.3	85
28	Geo-Neutrinos: from Theory to the KamLAND Results. Earth, Moon and Planets, 2007, 99, 91-110.	0.3	2
29	Perspectives for geo-neutrinos after KamLAND1. Journal of Physics: Conference Series, 2006, 39, 257-262.	0.3	0
30	Geo-Neutrinos: from Theory to the KamLAND Results. , 2006, , 91-110.		0
31	Geo-neutrinos: A new probe of Earth's interior. Earth and Planetary Science Letters, 2005, 238, 235-247.	1.8	32
32	Enhanced electron screening in $d(d,p)t$ for deuterated metals. European Physical Journal A, 2004, 19, 283-287.	1.0	97
33	The $14N(p,\hat{l}^3)15O$ reaction, solar neutrinos and the age of the globular clusters. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2004, 590, 13-20.	1.5	28
34	Cosmic and Galactic neutrino backgrounds from thermonuclear sources. Astroparticle Physics, 2004, 20, 683-701.	1.9	8
35	Nuclear Reactions in the Sun after SNO and KamLAND. Springer Proceedings in Physics, 2004, , 739-752.	0.1	1
36	Neutrinos and energetics of the Earth. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2003, 557, 139-146.	1.5	27

#	Article	IF	CITATIONS
37	KamLAND, terrestrial heat sources and neutrino oscillations. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2003, 558, 15-21.	1.5	24
38	Enhanced electron screening in $d(d, p)t$ for deuterated metals: a possible classical explanation. Nuclear Physics A, 2003, 719, C37-C42.	0.6	36
39	Fusion rate enhancement due to energy spread of colliding nuclei. Physical Review C, 2003, 67, .	1.1	23
40	Does solar physics provide constraints to weakly interacting massive particles?. Physical Review D, 2002, 66, .	1.6	41
41	What have we learnt about the Sun from the measurement of the 8B neutrino flux?. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2002, 526, 186-190.	1.5	13
42	Is G a conversion factor or a fundamental unit?. JETP Letters, 2002, 76, 485-485.	0.4	3
43	Helioseismology and screening of nuclear reactions in the Sun. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2001, 503, 121-125.	1.5	8
44	Atmospheric neutrino flux supported by recent muon experiments. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2001, 510, 173-188.	1.5	57
45	Helioseismology and solar neutrinos: an update. Nuclear Physics, Section B, Proceedings Supplements, 2001, 95, 116-122.	0.5	6
46	Helioseismology, solar models and solar neutrinos. Nuclear Physics, Section B, Proceedings Supplements, 2000, 81, 95-101.	0.5	5
47	Stellar evolution and large extra dimensions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2000, 481, 323-332.	1.5	19
48	Solar neutrino fluxes with arbitrary3Hemixing. Physical Review D, 1999, 60, .	1.6	4
49	Helioseismology, solar models and neutrino fluxes. Nuclear Physics, Section B, Proceedings Supplements, 1999, 70, 301-314.	0.5	11
50	The cross section of 3He(3He,2p)4He measured at solar energies. Nuclear Physics, Section B, Proceedings Supplements, 1999, 70, 382-385.	0.5	4
51	A compilation of charged-particle induced thermonuclear reaction rates. Nuclear Physics A, 1999, 656, 3-183.	0.6	1,887
52	Helioseismology and p+p \hat{a} †' d + e+ + \hat{l} ½e in the sun. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1998, 416, 365-368.	1.5	16
53	A signature of solar antineutrinos in Superkamiokande. Progress in Particle and Nuclear Physics, 1998, 40, 149-150.	5.6	1
54	Quantifying uncertainties in primordial nucleosynthesis without Monte Carlo simulations. Physical Review D, 1998, 58, .	1.6	73

#	Article	IF	CITATIONS
55	Solar neutrino interactions: Using charged currents at SNO to tell neutral currents at Super-Kamiokande. Physical Review D, 1998, 59, .	1.6	41
56	Cross section of3He(3He,2p)4He measured at solar energies. Physical Review C, 1998, 57, 2700-2710.	1.1	104
57	Helioseismic constraints to the central solar temperature and neutrino fluxes. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1997, 407, 155-160.	1.5	16
58	Helioseismology and standard solar models. Astroparticle Physics, 1997, 7, 77-95.	1.9	69
59	Solar neutrinos: beyond standard solar models. Physics Reports, 1997, 281, 309-398.	10.3	96
60	Superkamiokande and solar antineutrinos. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1997, 413, 378-381.	1.5	13
61	Further direct approaches to the nuclear reactions in the Sun. Nuclear Physics A, 1997, 621, 603-606.	0.6	0
62	Intermediate energy solar neutrinos. Nuclear Physics, Section B, Proceedings Supplements, 1996, 48, 343-349.	0.5	1
63	Status of the LUNA experiment. Nuclear Physics, Section B, Proceedings Supplements, 1996, 48, 375-377.	0.5	2
64	The fate of Li and Be in stars and in the laboratory. Zeitschrift Für Physik A, 1996, 354, 237-248.	0.9	1
65	Physics potentials of pp and pep solar neutrino fluxes. Astroparticle Physics, 1996, 5, 205-214.	1.9	6
66	LAST HOPE for an astrophysical solution to the solar neutrino problem. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1996, 365, 185-192.	1.5	35
67	The 51Cr neutrino source and Borexino: a desirable marriage. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1996, 387, 427-431.	1.5	16
68	Measurement of the 3He(3He,2p)4He cross section within the solar Gamow peak. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1996, 389, 452-456.	1.5	38
69	Just so? Vacuum oscillations and MSW: an update. Astroparticle Physics, 1995, 4, 159-175.	1.9	29
70	Prospects for underground accelerator research. Zeitschrift Für Physik A, 1995, 350, 289-301.	0.9	47
71	Where are the beryllium neutrinos?. Nuclear Physics, Section B, Proceedings Supplements, 1995, 43, 66-70.	0.5	8
72	Screening of nuclear reactions in the Sun and solar neutrinos. Physical Review C, 1995, 52, 1095-1101.	1.1	16

#	Article	IF	CITATIONS
73	Neutrinos from the Sun: Experimental results confronted with solar models. Physical Review D, 1994, 50, 4749-4761.	1.6	42
74	Electron screening in thed+3He fusion reaction. Zeitschrift Fýr Physik A, 1994, 350, 171-176.	0.9	39
75	Laboratory for Underground Nuclear Astrophysics (LUNA). Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1994, 350, 327-337.	0.7	89
76	The MSW solution to the solar neutrino problem for non-standard solar models. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1994, 341, 38-45.	1.5	25
77	Future solar neutrino spectroscopy and neutrino properties. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1994, 324, 425-432.	1.5	42
78	A fast mechanism for the acceleration of solar cosmic rays and solar energetic particles in solar flares. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1993, 307, 128-131.	1.5	1
79	The pp reaction in the sun and solar neutrinos. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1993, 303, 68-74.	1.5	23
80	Fast neutrino decay and solar neutrino detectors. Zeitschrift FÃ $^1\!\!/\!\!4$ r Physik C-Particles and Fields, 1992, 54, 581-586.	1.5	41
81	Molecular trapping of nuclei produced in neutrino capture reactions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1992, 297, 197-200.	1.5	O
82	Quantum mechanical calculation of the electron screening in d-D fusion. Physics Letters, Section A: General, Atomic and Solid State Physics, 1991, 153, 456-460.	0.9	9
83	Measurements on radioactivity of ancient roman lead to be used as shield in searches for rare events. Nuclear Instruments & Methods in Physics Research B, 1991, 61, 106-117.	0.6	38
84	Do e come out from the sun?. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1991, 259, 119-124.	1.5	33
85	Neutrino oscillations and magnetic moment transitions in a model with a conserved lepton number. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1991, 264, 381-388.	1.5	3
86	Solar neutrinos, sunspot number and the magnetic field in the convective zone. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1991, 253, 181-184.	1.5	9
87	About the boundary conditions for the three-body scattering problem in the adiabatic representation. Societa Italiana Di Fisica Nuovo Cimento B-General Physics, Relativity Astronomy and Mathematical Physics and Methods, 1990, 105, 459-468.	0.2	10
88	Atomic effects in the determination of nuclear cross sections of astrophysical interest. Nuclear Physics A, 1990, 513, 316-343.	0.6	73
89	Calculation of the elastic scattering cross sections for $p\hat{l}/4+p$ and $t\hat{l}/4+t$ collisions in adiabatic representation. Physics Letters, Section A: General, Atomic and Solid State Physics, 1990, 149, 463-468.	0.9	6
90	A dynamical calculation of the electron shielding for d-d fusion. Physics Letters, Section A: General, Atomic and Solid State Physics, 1990, 146, 128-133.	0.9	12

#	Article	IF	Citations
91	Nuclear fusion in molecular systems. Journal of Physics G: Nuclear and Particle Physics, 1990, 16, 83-98.	1.4	3
92	The missing-mass problem and the precession of perihelia. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1989, 12, 121-127.	0.2	2
93	The deconfining phase transition and the glueball channels in pure gauge QCD. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1989, 220, 607-610.	1.5	14
94	Axion to magnon conversion. A scheme for the detection of galactic axions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1989, 226, 357-360.	1.5	58
95	A new computation of the correlation length near the deconfining transition in SU(3). Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1989, 224, 333-338.	1.5	14
96	Neutrinos from SN1987A and long-range forces. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1989, 221, 353-356.	1.5	7
97	On the order of the deconfining phase transition in SU(3) LGT. Nuclear Physics, Section B, Proceedings Supplements, 1989, 9, 315-319.	0.5	0
98	From APE to APE-100: From 1 to 100 gflops in lattice gauge theory simulations. Computer Physics Communications, $1989, 57, 285-289$.	3.0	12
99	Collision-induced spin flip in isotopes of muonic hydrogen. Physics Letters, Section A: General, Atomic and Solid State Physics, 1989, 134, 435-439.	0.9	34
100	The hadronic mass spectrum in quenched lattice QCD: \hat{l}^2 =5.7. Nuclear Physics B, 1989, 317, 509-525.	0.9	55
101	Phenomenology of strange quark matter. Progress in Particle and Nuclear Physics, 1988, 20, 343-351.	5.6	0
102	The hadronic mass spectrum in quenched lattice QCD: Results at \hat{l}^2 = 5.7 and \hat{l}^2 = 6.0. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1988, 214, 115-119.	1.5	57
103	Scaling in lattice QCD: Glueball masses and string tension. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1988, 205, 535-539.	1.5	25
104	The solar neutrino puzzle and the vL → vR conversion hypothesis. Nuclear Physics B, 1988, 304, 909-920.	0.9	66
105	Order of the Deconfining Phase Transition in Pure-Gauge QCD. Physical Review Letters, 1988, 61, 1545-1548.	2.9	111
106	The APE computer: An array processor optimized for lattice gauge theory simulations. Computer Physics Communications, 1987, 45, 345-353.	3.0	43
107	Glueball masses and the loop-loop correlation functions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1987, 197, 400-402.	1.5	48
108	Glueball masses and string tension in lattice QCD. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1987, 192, 163-169.	1.5	618

#	Article	IF	CITATIONS
109	Muon-Catalyzed Fusion: A Short Introduction and a Few Comments. , 1987, , 9-17.		1
110	The probability of muon sticking to helium in the muon-catalyzed fusion dtl̂¼ → l̂¼-4He + n. Nuclear Physics A, 1986, 454, 653-668.	0.6	48
111	Nuclear effects on proton decay. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1986, 167, 356-359.	1.5	4
112	Stripping ofHâ^'in low-energy collisions with antiprotons: Classical-trajectory Monte Carlo calculation. Physical Review A, 1986, 33, 1590-1594.	1.0	62
113	Research on Muon Catalyzed Fusion in the USSR. Fusion Science and Technology, 1985, 8, 2646-2654.	0.6	3
114	Magnetic monopoles in stellar interiors. Lettere Al Nuovo Cimento Rivista Internazionale Della Società Italiana Di Fisica, 1985, 42, 123-128.	0.4	2
115	Auger-like formation of monopolium. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1985, 165, 425-428.	1.5	0
116	Magnetic monopoles in ferromagnetic materials. Nuclear Physics B, 1985, 262, 49-66.	0.9	0
117	On the capture of protons by magnetic monopoles. Nuclear Physics B, 1985, 249, 519-532.	0.9	6
118	Monopole trapping inside stars and phenomenological consequences. Nuclear Physics B, 1985, 258, 726-746.	0.9	5
119	The muon attachment probability after prompt fission. Nuclear Physics A, 1984, 423, 429-444.	0.6	8
120	Molecular systems with muons or monopoles. Nuclear Physics A, 1984, 416, 519-533.	0.6	1
121	Formation of monopole-proton bound states in the hot universe. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1984, 143, 357-362.	1.5	13
122	On the energy loss of very-slowly-moving magnetic monopoles. Nuclear Physics B, 1984, 238, 167-180.	0.9	6
123	Interactions of magnetic monopoles with nuclei and atoms: Formation of bound states and phenomenological consequences. Nuclear Physics B, 1984, 232, 236-262.	0.9	21
124	On the significance of muon distribution between the fission fragments. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1983, 132, 39-43.	1.5	4
125	Bounds on a hypothetical fundamental length. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1983, 133, 231-233.	1.5	12
126	Monopolic atoms and monopole catalysis of proton decay. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1983, 124, 29-33.	1.5	7

#	Article	IF	Citations
127	Binding of magnetic monopoles and atomic nuclei. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1983, 124, 493-496.	1.5	30
128	Bounds on long-range hadronic interactions. Nuclear Physics B, 1983, 217, 215-247.	0.9	9
129	Hâ^'stripping in collisions with low-energypÂ ⁻ andHâ^'. Physical Review A, 1983, 27, 737-739.	1.0	10
130	Negative muons in matter: Atomic and molecular aspects. Nuclear Physics A, 1982, 374, 607-617.	0.6	4
131	Mesic molecules and muon catalysed fusion. Physics Reports, 1982, 86, 169-216.	10.3	122
132	Enhancement of the number of muon catalysed fusions. Nature, 1982, 297, 134-136.	13.7	17
133	Some aspects of the muon catalysis of d-t fusion. Nuclear Physics A, 1981, 364, 383-407.	0.6	61
134	Effects of surface structure in meson transfer reactions. Physics Letters, Section A: General, Atomic and Solid State Physics, 1980, 78, 437-442.	0.9	3
135	Protonium formation in flight. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1979, 85, 280-284.	1.5	35
136	Meson transfer to atoms and molecules. Il Nuovo Cimento A, 1979, 50, 373-392.	0.2	17
137	Coulomb de-excitation of mesic hydrogen. Il Nuovo Cimento A, 1978, 43, 9-30.	0.2	85
138	On the formation of muonic hydrogen at low pressure. Il Nuovo Cimento A, 1978, 43, 396-412.	0.2	5
139	On the collision quenching of the 2S-state of muonic hydrogen. Societa Italiana Di Fisica Nuovo Cimento B-General Physics, Relativity Astronomy and Mathematical Physics and Methods, 1977, 39, 281-291.	0.2	25
140	Muon transfer to heavy atoms: A probe for the study of the $(\hat{l}/4p)2S$ system. Il Nuovo Cimento A, 1976, 36, 317-330.	0.2	29
141	Analyticity in a symmetry-breaking parameter. Il Nuovo Cimento A, 1974, 24, 241-248.	0.2	0
142	Corrections to theg - 2 Frequency in weak focusing storage devices due to betatron oscillations. Il Nuovo Cimento A, 1974, 21, 297-328.	0.2	16
143	Oscillations of the e.m. form factor and p-p elastic cross-section. Lettere Al Nuovo Cimento Rivista Internazionale Della SocietÀ Italiana Di Fisica, 1973, 8, 675-680.	0.4	0
144	K-leptonic decays and spontaneous breakdown of chiral symmetry. Il Nuovo Cimento A, 1972, 7, 397-406.	0.2	0