Shiqiang Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/569972/publications.pdf

Version: 2024-02-01

		516215	454577
30	1,163	16	30
papers	citations	h-index	g-index
35	35	35	1495
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Optogenetic tools for manipulation of cyclic nucleotides functionally coupled to cyclic nucleotideâ€gated channels. British Journal of Pharmacology, 2022, 179, 2519-2537.	2.7	6
2	Characterization and Modification of Light-Sensitive Phosphodiesterases from Choanoflagellates. Biomolecules, 2022, 12, 88.	1.8	4
3	PMRT1, a <i>Plasmodium</i> -Specific Parasite Plasma Membrane Transporter, Is Essential for Asexual and Sexual Blood Stage Development. MBio, 2022, 13, e0062322.	1.8	7
4	Visual function restoration with a highly sensitive and fast Channelrhodopsin in blind mice. Signal Transduction and Targeted Therapy, 2022, 7, 104.	7.1	10
5	Optogenetic control of plant growth by a microbial rhodopsin. Nature Plants, 2021, 7, 144-151.	4.7	35
6	An engineered membrane-bound guanylyl cyclase with light-switchable activity. BMC Biology, 2021, 19, 54.	1.7	8
7	Extending the Anion Channelrhodopsin-Based Toolbox for Plant Optogenetics. Membranes, 2021, 11, 287.	1.4	9
8	mem-iLID, a fast and economic protein purification method. Bioscience Reports, 2021, 41, .	1,1	3
9	Optogenetic control of the guard cell membrane potential and stomatal movement by the light-gated anion channel $\langle i \rangle Gt \langle j \rangle$ ACR1. Science Advances, 2021, 7, .	4.7	28
10	Advances and prospects of rhodopsin-based optogenetics in plant research. Plant Physiology, 2021, 187, 572-589.	2.3	6
11	Hypothalamic dopamine neurons motivate mating through persistent cAMP signalling. Nature, 2021, 597, 245-249.	13.7	63
12	PACmn for improved optogenetic control of intracellular cAMP. BMC Biology, 2021, 19, 227.	1.7	13
13	Modified Rhodopsins From Aureobasidium pullulans Excel With Very High Proton-Transport Rates. Frontiers in Molecular Biosciences, 2021, 8, 750528.	1.6	8
14	Using Expansion Microscopy to Visualize and Characterize the Morphology of Mitochondrial Cristae. Frontiers in Cell and Developmental Biology, 2020, 8, 617.	1.8	14
15	Advances, Perspectives and Potential Engineering Strategies of Light-Gated Phosphodiesterases for Optogenetic Applications. International Journal of Molecular Sciences, 2020, 21, 7544.	1.8	5
16	Action potentials in Xenopus oocytes triggered by blue light. Journal of General Physiology, 2020, 152,	0.9	2
17	Mutated Channelrhodopsins with Increased Sodium and Calcium Permeability. Applied Sciences (Switzerland), 2019, 9, 664.	1.3	25
18	An optogenetic analogue of second-order reinforcement in <i>Drosophila</i> . Biology Letters, 2019, 15, 20190084.	1.0	29

#	Article	IF	CITATIONS
19	Optimized photo-stimulation of halorhodopsin for long-term neuronal inhibition. BMC Biology, 2019, 17, 95.	1.7	25
20	A novel rhodopsin phosphodiesterase from <i>Salpingoeca rosetta</i> shows light-enhanced substrate affinity. Biochemical Journal, 2018, 475, 1121-1128.	1.7	28
21	Two-component cyclase opsins of green algae are ATP-dependent and light-inhibited guanylyl cyclases. BMC Biology, 2018, 16, 144.	1.7	35
22	Synthetic Light-Activated Ion Channels for Optogenetic Activation and Inhibition. Frontiers in Neuroscience, 2018, 12, 643.	1.4	42
23	Rhodopsin-cyclases for photocontrol of cGMP/cAMP and 2.3 à structure of the adenylyl cyclase domain. Nature Communications, 2018, 9, 2046.	5.8	55
24	Mechano-dependent signaling by Latrophilin/CIRL quenches cAMP in proprioceptive neurons. ELife, 2017, 6, .	2.8	138
25	Geminivirus Activates ASYMMETRIC LEAVES 2 to Accelerate Cytoplasmic DCP2-Mediated mRNA Turnover and Weakens RNA Silencing in Arabidopsis. PLoS Pathogens, 2015, 11, e1005196.	2.1	61
26	Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp. Nature Communications, 2015, 6, 8046.	5.8	95
27	Channelrhodopsin-2–XXL, a powerful optogenetic tool for low-light applications. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13972-13977.	3.3	182
28	A LOV-domain-mediated blue-light-activated adenylate (adenylyl) cyclase from the cyanobacterium <i>Microcoleus chthonoplastes</i> PCC 7420. Biochemical Journal, 2013, 455, 359-365.	1.7	61
29	Dissecting Functions of <i>KATANIN</i> and <i>WRINKLED1</i> in Cotton Fiber Development by Virus-Induced Gene Silencing Â. Plant Physiology, 2012, 160, 738-748.	2.3	105
30	A new strain of Indian cassava mosaic virus causes a mosaic disease in the biodiesel crop Jatropha curcas. Archives of Virology, 2010, 155, 607-612.	0.9	58