Beng Hau Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5699692/publications.pdf

Version: 2024-02-01

687220 794469 19 613 13 19 citations h-index g-index papers 21 21 21 757 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Robust Whispering-Gallery-Mode Microbubble Lasers from Colloidal Quantum Dots. Nano Letters, 2017, 17, 2640-2646.	4. 5	83
2	How Bulk Nanobubbles Might Survive. Physical Review Letters, 2020, 124, 134503.	2.9	71
3	Resolving the Pinning Force of Nanobubbles with Optical Microscopy. Physical Review Letters, 2017, 118, 054501.	2.9	58
4	Surface Nanobubbles Are Stabilized by Hydrophobic Attraction. Physical Review Letters, 2018, 120, 164502.	2.9	56
5	Stability of surface and bulk nanobubbles. Current Opinion in Colloid and Interface Science, 2021, 53, 101428.	3.4	56
6	Graphene Nanobubbles Produced by Water Splitting. Nano Letters, 2017, 17, 2833-2838.	4. 5	43
7	Stability, Dynamics, and Tolerance to Undersaturation of Surface Nanobubbles. Physical Review Letters, 2019, 122, 134502.	2.9	43
8	Bjerknes Forces in Motion: Longâ€Range Translational Motion and Chiral Directionality Switching in Bubbleâ€Propelled Micromotors via an Ultrasonic Pathway. Advanced Functional Materials, 2018, 28, 1702618.	7.8	41
9	Distinguishing Nanobubbles from Nanodroplets with AFM: The Influence of Vertical and Lateral Imaging Forces. Langmuir, 2016, 32, 12710-12715.	1.6	40
10	Stability of Nanobubbles Formed at the Interface between Cold Water and Hot Highly Oriented Pyrolytic Graphite. Langmuir, 2016, 32, 11212-11220.	1.6	30
11	The interplay among gas, liquid and solid interactions determines the stability of surface nanobubbles. Nanoscale, 2020, 12, 22698-22709.	2.8	27
12	Direct Measurement of the Contents, Thickness, and Internal Pressure of Molybdenum Disulfide Nanoblisters. Nano Letters, 2020, 20, 3478-3484.	4.5	14
13	Etched nanoholes in graphitic surfaces for enhanced electrochemistry of basal plane. Carbon, 2017, 123, 84-92.	5 . 4	13
14	Identifying surface-attached nanobubbles. Current Opinion in Colloid and Interface Science, 2021, 53, 101429.	3.4	11
15	Merging of soap bubbles and why surfactant matters. Applied Physics Letters, 2020, 116, .	1.5	7
16	Transient Solubility Gradients Mediate Oversaturation during Solvent Exchange. Physical Review Letters, 2021, 126, 234502.	2.9	7
17	Viscous field-aligned water exhibits cubic-ice-like structural motifs. Physical Chemistry Chemical Physics, 2018, 20, 19877-19884.	1.3	6
18	Growth and wetting of water droplet condensed between micron-sized particles and substrate. Scientific Reports, 2016, 6, 30989.	1.6	5

#	Article	IF	CITATIONS
19	Strong shear flows release gaseous nuclei from surface micro- and nanobubbles. Physical Review Fluids, 2021, 6, .	1.0	2