Matthew T Aliota

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5699361/publications.pdf Version: 2024-02-01

ΜΑΤΤΗΓΙΝ Τ ΔΙΙΟΤΑ

#	Article	IF	CITATIONS
1	A rhesus macaque model of Asian-lineage Zika virus infection. Nature Communications, 2016, 7, 12204.	5.8	353
2	The wMel strain of Wolbachia Reduces Transmission of Zika virus by Aedes aegypti. Scientific Reports, 2016, 6, 28792.	1.6	265
3	Characterization of Lethal Zika Virus Infection in AG129 Mice. PLoS Neglected Tropical Diseases, 2016, 10, e0004682.	1.3	251
4	Chloroquine, an Endocytosis Blocking Agent, Inhibits Zika Virus Infection in Different Cell Models. Viruses, 2016, 8, 322.	1.5	227
5	Highly efficient maternal-fetal Zika virus transmission in pregnant rhesus macaques. PLoS Pathogens, 2017, 13, e1006378.	2.1	201
6	The wMel Strain of Wolbachia Reduces Transmission of Chikungunya Virus in Aedes aegypti. PLoS Neglected Tropical Diseases, 2016, 10, e0004677.	1.3	168
7	Heterologous Protection against Asian Zika Virus Challenge in Rhesus Macaques. PLoS Neglected Tropical Diseases, 2016, 10, e0005168.	1.3	125
8	Zika in the Americas, year 2: What have we learned? What gaps remain? A report from the Global Virus Network. Antiviral Research, 2017, 144, 223-246.	1.9	104
9	Ocular and uteroplacental pathology in a macaque pregnancy with congenital Zika virus infection. PLoS ONE, 2018, 13, e0190617.	1.1	89
10	Infection via mosquito bite alters Zika virus tissue tropism and replication kinetics in rhesus macaques. Nature Communications, 2017, 8, 2096.	5.8	87
11	<i>Culex pipiens</i> and <i>Aedes triseriatus</i> Mosquito Susceptibility to Zika Virus. Emerging Infectious Diseases, 2016, 22, 1857-1859.	2.0	86
12	Broad-Spectrum Antiviral Strategies and Nucleoside Analogues. Viruses, 2021, 13, 667.	1.5	79
13	Zika viruses of African and Asian lineages cause fetal harm in a mouse model of vertical transmission. PLoS Neglected Tropical Diseases, 2019, 13, e0007343.	1.3	70
14	Dual RNA-seq of Parasite and Host Reveals Gene Expression Dynamics during Filarial Worm–Mosquito Interactions. PLoS Neglected Tropical Diseases, 2014, 8, e2905.	1.3	68
15	Mosquito Infection Responses to Developing Filarial Worms. PLoS Neglected Tropical Diseases, 2009, 3, e529.	1.3	66
16	A multi-center phase II randomized clinical trial of losartan on symptomatic outpatients with COVID-19. EClinicalMedicine, 2021, 37, 100957.	3.2	56
17	Oropharyngeal mucosal transmission of Zika virus in rhesus macaques. Nature Communications, 2017, 8, 169.	5.8	49
18	Primary infection with dengue or Zika virus does not affect the severity of heterologous secondary infection in macaques. PLoS Pathogens, 2019, 15, e1007766.	2.1	46

MATTHEW T ALIOTA

#	Article	IF	CITATIONS
19	Mosquito Transcriptome Profiles and Filarial Worm Susceptibility in Armigeres subalbatus. PLoS Neglected Tropical Diseases, 2010, 4, e666.	1.3	45
20	Using barcoded Zika virus to assess virus population structure in vitro and in Aedes aegypti mosquitoes. Virology, 2018, 521, 138-148.	1.1	43
21	Efficacy of Losartan in Hospitalized Patients With COVID-19–Induced Lung Injury. JAMA Network Open, 2022, 5, e222735.	2.8	42
22	Detection of Autochthonous Zika Virus Transmission in Sincelejo, Colombia. Emerging Infectious Diseases, 2016, 22, 927-929.	2.0	39
23	Molecularly barcoded Zika virus libraries to probe in vivo evolutionary dynamics. PLoS Pathogens, 2018, 14, e1006964.	2.1	38
24	Characterization of Rabensburg Virus, a Flavivirus Closely Related to West Nile Virus of the Japanese Encephalitis Antigenic Group. PLoS ONE, 2012, 7, e39387.	1.1	36
25	Mosquito transcriptome changes and filarial worm resistance in Armigeres subalbatus. BMC Genomics, 2007, 8, 463.	1.2	31
26	Filarial Worms Reduce Plasmodium Infectivity in Mosquitoes. PLoS Neglected Tropical Diseases, 2011, 5, e963.	1.3	28
27	Using Macaques to Address Critical Questions in Zika Virus Research. Annual Review of Virology, 2019, 6, 481-500.	3.0	27
28	Dissecting the Role of E2 Protein Domains in Alphavirus Pathogenicity. Journal of Virology, 2016, 90, 2418-2433.	1.5	26
29	Zika virus replication and cytopathic effects in liver cells. PLoS ONE, 2019, 14, e0214016.	1.1	26
30	African-Lineage Zika Virus Replication Dynamics and Maternal-Fetal Interface Infection in Pregnant Rhesus Macaques. Journal of Virology, 2021, 95, e0222020.	1.5	26
31	Previous exposure to dengue virus is associated with increased Zika virus burden at the maternal-fetal interface in rhesus macaques. PLoS Neglected Tropical Diseases, 2021, 15, e0009641.	1.3	20
32	Embryotoxic impact of Zika virus in a rhesus macaque in vitro implantation modelâ€. Biology of Reproduction, 2020, 102, 806-816.	1.2	18
33	Quantitative definition of neurobehavior, vision, hearing and brain volumes in macaques congenitally exposed to Zika virus. PLoS ONE, 2020, 15, e0235877.	1.1	16
34	Construction and characterization of an expressed sequenced tag library for the mosquito vector Armigeres subalbatus. BMC Genomics, 2007, 8, 462.	1.2	12
35	Spondweni virus causes fetal harm in Ifnar1 mice and is transmitted by Aedes aegypti mosquitoes. Virology, 2020, 547, 35-46.	1.1	12
36	Neonatal Development in Prenatally Zika Virus-Exposed Infant Macaques with Dengue Immunity. Viruses, 2021, 13, 1878.	1.5	11

MATTHEW T ALIOTA

#	Article	IF	CITATIONS
37	Rapid Evolution of Enhanced Zika Virus Virulence during Direct Vertebrate Transmission Chains. Journal of Virology, 2021, 95, .	1.5	10
38	Zika Virus Exposure in an HIV-Infected Cohort in Ghana. Journal of Acquired Immune Deficiency Syndromes (1999), 2018, 78, e35-e38.	0.9	9
39	Early Embryonic Loss Following Intravaginal Zika Virus Challenge in Rhesus Macaques. Frontiers in Immunology, 2021, 12, 686437.	2.2	9
40	Reversion to ancestral Zika virus NS1 residues increases competence of Aedes albopictus. PLoS Pathogens, 2020, 16, e1008951.	2.1	9
41	Biology and Transmission Dynamics of Aedes flavivirus. Journal of Medical Entomology, 2022, 59, 659-666.	0.9	9
42	Tracking dengue virus type 1 genetic diversity during lineage replacement in an hyperendemic area in Colombia. PLoS ONE, 2019, 14, e0212947.	1.1	7
43	Zika Virus Infection of Pregnant <i>Ifnar1</i> ^{â^'/â^'} Mice Triggers Strain-Specific Differences in Fetal Outcomes. Journal of Virology, 2021, 95, e0081821.	1.5	6
44	Human immune globulin treatment controls Zika viremia in pregnant rhesus macaques. PLoS ONE, 2022, 17, e0266664.	1.1	4
45	Correction for Riemersma et al., "Rapid Evolution of Enhanced Zika Virus Virulence during Direct Vertebrate Transmission Chainsâ€, Journal of Virology, 2022, , e0050122.	1.5	0