Caiping Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/569897/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Shoot bending promotes flower bud formation by mi <scp>RNA</scp> â€mediated regulation in apple (<i><scp>M</scp>alus domestica </i> <scp>B</scp> orkh.). Plant Biotechnology Journal, 2016, 14, 749-770.	8.3	69
2	Genome-wide identification of vegetative phase transition-associated microRNAs and target predictions using degradome sequencing in Malus hupehensis. BMC Genomics, 2014, 15, 1125.	2.8	60
3	Identification and Expression Analysis of Polygalacturonase Family Members during Peach Fruit Softening. International Journal of Molecular Sciences, 2016, 17, 1933.	4.1	60
4	Transcriptome analysis reveals the effects of sugar metabolism and auxin and cytokinin signaling pathways on root growth and development of grafted apple. BMC Genomics, 2016, 17, 150.	2.8	52
5	Characteristics and regulatory pathway of the PrupeSEP1 SEPALLATA gene during ripening and softening in peach fruits. Plant Science, 2017, 257, 63-73.	3.6	49
6	Transcriptome Analysis Reveals Multiple Hormones, Wounding and Sugar Signaling Pathways Mediate Adventitious Root Formation in Apple Rootstock. International Journal of Molecular Sciences, 2018, 19, 2201.	4.1	48
7	Down-Regulation of PpBGAL10 and PpBGAL16 Delays Fruit Softening in Peach by Reducing Polygalacturonase and Pectin Methylesterase Activity. Frontiers in Plant Science, 2018, 9, 1015.	3.6	46
8	iTRAQ-Based Proteomic Analysis Reveals Potential Regulation Networks of IBA-Induced Adventitious Root Formation in Apple. International Journal of Molecular Sciences, 2018, 19, 667.	4.1	41
9	Genome-wide analysis of carotenoid cleavage oxygenase genes and their responses to various phytohormones and abiotic stresses in apple (Malus domestica). Plant Physiology and Biochemistry, 2018, 123, 81-93.	5.8	40
10	miRNAs associated with auxin signaling, stress response, and cellular activities mediate adventitious root formation in apple rootstocks. Plant Physiology and Biochemistry, 2019, 139, 66-81.	5.8	36
11	Genome-Wide Sequence Variation Identification and Floral-Associated Trait Comparisons Based on the Re-sequencing of the â€`Nagafu No. 2' and â€`Qinguan' Varieties of Apple (Malus domestica Borkh.). Frontiers in Plant Science, 2016, 7, 908.	3.6	33
12	Expression analysis of key auxin synthesis, transport, and metabolism genes in different young dwarfing apple trees. Acta Physiologiae Plantarum, 2016, 38, 1.	2.1	31
13	Proteome Analyses Using iTRAQ Labeling Reveal Critical Mechanisms in Alternate Bearing <i>Malus prunifolia</i> . Journal of Proteome Research, 2016, 15, 3602-3616.	3.7	30
14	Regulation of the expression of lipoxygenase genes in Prunus persica fruit ripening. Acta Physiologiae Plantarum, 2011, 33, 1345-1352.	2.1	29
15	Comparative RNA-Sequencing and DNA Methylation Analyses of Apple (<i>Malus domestica</i> Borkh.) Buds with Diverse Flowering Capabilities Reveal Novel Insights into the Regulatory Mechanisms of Flower Bud Formation. Plant and Cell Physiology, 2019, 60, 1702-1721.	3.1	27
16	Genome-wide identification of the 14–3-3 gene family and its participation in floral transition by interacting with TFL1/FT in apple. BMC Genomics, 2021, 22, 41.	2.8	25
17	Spermidine application affects the adventitious root formation and root morphology of apple rootstock by altering the hormonal profile and regulating the gene expression pattern. Scientia Horticulturae, 2020, 266, 109310.	3.6	24
18	The role of β-hexosaminidase in peach (Prunus persica) fruit softening. Scientia Horticulturae, 2014, 169, 226-233.	3.6	22

CAIPING ZHAO

#	Article	IF	CITATIONS
19	Genome-wide identification, characterization and expression analysis of novel long non-coding RNAs that mediate IBA-induced adventitious root formation in apple rootstocks. Plant Growth Regulation, 2019, 87, 287-302.	3.4	21
20	Transcription profiles reveal the regulatory mechanisms of spur bud changes and flower induction in response to shoot bending in apple (Malus domestica Borkh.). Plant Molecular Biology, 2019, 99, 45-66.	3.9	21
21	Transcriptome analysis reveals the promotive effect of potassium by hormones and sugar signaling pathways during adventitious roots formation in the apple rootstock. Plant Physiology and Biochemistry, 2021, 165, 123-136.	5.8	20
22	Comparative RNA-sequencing-based transcriptome profiling of buds from profusely flowering â€~Qinguan' and weakly flowering â€~Nagafu no. 2' apple varieties reveals novel insights into the regulatory mechanisms underlying floral induction. BMC Plant Biology, 2018, 18, 370.	3.6	19
23	Zinc Finger-Homeodomain Genes: Evolution, Functional Differentiation, and Expression Profiling Under Flowering-Related Treatments and Abiotic Stresses in Plants. Evolutionary Bioinformatics, 2019, 15, 117693431986793.	1.2	19
24	Mdm-miR160 Participates in Auxin-Induced Adventitious Root formation of apple rootstock. Scientia Horticulturae, 2020, 270, 109442.	3.6	17
25	Expression of genes in the potential regulatory pathways controlling alternate bearing in â€~Fuji' (Malus domestica Borkh.) apple trees during flower induction. Plant Physiology and Biochemistry, 2018, 132, 579-589.	5.8	15
26	Exogenous application of GA3 inactively regulates axillary bud outgrowth by influencing of branching-inhibitors and bud-regulating hormones in apple (Malus domestica Borkh.). Molecular Genetics and Genomics, 2018, 293, 1547-1563.	2.1	15
27	MdKNOX19, a class II knotted-like transcription factor of apple, plays roles in ABA signalling/sensitivity by targeting ABI5 during organ development. Plant Science, 2021, 302, 110701.	3.6	15
28	Construction of a high-density SNP-based genetic map and identification of fruit-related QTLs and candidate genes in peach [Prunus persica (L.) Batsch]. BMC Plant Biology, 2020, 20, 438.	3.6	14
29	Genome-wide identification and expression profiling of the YUCCA gene family in Malus domestica. Scientific Reports, 2020, 10, 10866.	3.3	14
30	The downregulation of PpPG21 and PpPG22 influences peach fruit texture and softening. Planta, 2021, 254, 22.	3.2	14
31	High nitrate inhibited adventitious roots formation in apple rootstock by altering hormonal contents and miRNAs expression profiles. Scientia Horticulturae, 2021, 286, 110230.	3.6	14
32	Revealing critical mechanisms of BR-mediated apple nursery tree growth using iTRAQ-based proteomic analysis. Journal of Proteomics, 2018, 173, 139-154.	2.4	13
33	Genome-wide identification of SERK genes in apple and analyses of their role in stress responses and growth. BMC Genomics, 2018, 19, 962.	2.8	13
34	Identification and Characterization of miRNAs in Self-Rooted and Grafted Malus Reveals Critical Networks Associated with Flowering. International Journal of Molecular Sciences, 2018, 19, 2384.	4.1	13
35	Genome-wide identification and expression profiling analysis of brassinolide signal transduction genes regulating apple tree architecture. Acta Physiologiae Plantarum, 2017, 39, 1.	2.1	11
36	Selection and Validation of Reliable Reference Genes for Gene Expression Studies in Different Genotypes and TRV-Infected Fruits of Peach (Prunus persica L. Batsch) during Ripening. Genes, 2022, 13, 160.	2.4	11

CAIPING ZHAO

#	Article	IF	CITATIONS
37	Molecular mechanism of MdWUS2–MdTCP12 interaction in mediating cytokinin signaling to control axillary bud outgrowth. Journal of Experimental Botany, 2021, 72, 4822-4838.	4.8	10
38	Transcriptome Analysis Reveals New Insights into <i>MdBAK1</i> -Mediated Plant Growth in <i>Malus domestica</i> . Journal of Agricultural and Food Chemistry, 2019, 67, 9757-9771.	5.2	9
39	Identification of apple TFL1-interacting proteins uncovers an expanded flowering network. Plant Cell Reports, 2021, 40, 2325-2340.	5.6	9
40	PpePL1 and PpePL15 Are the Core Members of the Pectate Lyase Gene Family Involved in Peach Fruit Ripening and Softening. Frontiers in Plant Science, 2022, 13, 844055.	3.6	9
41	Influence of endogenous and exogenous RNases on the variation of pollen cytosolic-free Ca2+ in Pyrus serotina Rehd. Acta Physiologiae Plantarum, 2008, 30, 233-241.	2.1	8
42	15NITROGEN STUDY ON ABSORPTION, DISTRIBUTION AND UTILIZATION OF NITROGEN APPLIED IN EARLY SUMMER IN RED FUJI APPLE. Journal of Plant Nutrition, 2012, 35, 1557-1571.	1.9	8
43	Identification of Peach NAP Transcription Factor Genes and Characterization of their Expression in Vegetative and Reproductive Organs during Development and Senescence. Frontiers in Plant Science, 2016, 7, 147.	3.6	8
44	Identification of CDF family members in apple and their expression in response to sucrose during floral induction. Journal of Plant Interactions, 2020, 15, 241-256.	2.1	6
45	PrupeFUL4 regulates ripening and softening of peach fruits through ethylene biosynthesis. Acta Physiologiae Plantarum, 2022, 44, 1.	2.1	4
46	PpSAUR43, an Auxin-Responsive Gene, Is Involved in the Post-Ripening and Softening of Peaches. Horticulturae, 2022, 8, 379.	2.8	3
47	The East Asian wild apples, <i>Malus baccata</i> (L.) Borkh and <i>Malus hupehensis</i> (Pamp.) Rehder., are additional contributors to the genomes of cultivated European and Chinese varieties. Molecular Ecology, 2023, 32, 5125-5139.	3.9	3