
Longgang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5698699/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Facile preparation of nanomicelles using polymyxin E for enhanced antitumor effects. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 329-341.	3.5	0
2	Zwitterionic daptomycin stabilized palladium nanoparticles with enhanced peroxidase-like properties for glucose detection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 633, 127797.	4.7	19
3	Dual hannel Flexible Strain Sensors Based on Mechanofluorescent and Conductive Hydrogel Laminates. Advanced Optical Materials, 2022, 10, .	7.3	32
4	Biomineralized synthesis of palladium nanoflowers for photothermal treatment of cancer and wound healing. International Journal of Pharmaceutics, 2022, 615, 121489.	5.2	33
5	Development of an Ultrasmall and Biocompatible Platinum Nanozyme Encapsulated by Zwitterionic Dendrimer for Highly Sensitive Detection of Glucose. Langmuir, 2022, 38, 5568-5578.	3.5	4
6	Self-assembly synthesis of flower-like gold nanoparticles for photothermal treatment of cancer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647, 129163.	4.7	13
7	Palladium Nanoparticles Stabilized by Lentinan with Enhanced Peroxidaseâ€like Activity for Sensitive Detection of H ₂ O ₂ . ChemistrySelect, 2022, 7, .	1.5	1
8	Green synthesis of platinum nanoclusters using lentinan for sensitively colorimetric detection of glucose. International Journal of Biological Macromolecules, 2021, 172, 289-298.	7.5	71
9	Biocompatible Platinum Nanoclusters Prepared Using Bitter Gourd Polysaccharide for Colorimetric Detection of Ascorbic Acid. Biomolecules, 2021, 11, 647.	4.0	13
10	"Stealth―dendrimers with encapsulation of indocyanine green for photothermal and photodynamic therapy of cancer. International Journal of Pharmaceutics, 2021, 600, 120502.	5.2	35
11	Peroxidase-Like Platinum Clusters Synthesized by Ganoderma lucidum Polysaccharide for Sensitively Colorimetric Detection of Dopamine. Molecules, 2021, 26, 2738.	3.8	13
12	Polyethyleneimine-Oleic Acid Micelles-Stabilized Palladium Nanoparticles as Highly Efficient Catalyst to Treat Pollutants with Enhanced Performance. Polymers, 2021, 13, 1890.	4.5	3
13	Green synthesis of stable platinum nanoclusters with enhanced peroxidase-like activity for sensitive detection of glucose and glutathione. Microchemical Journal, 2021, 166, 106202.	4.5	33
14	Doxorubicin-loaded natural daptomycin micelles with enhanced targeting and anti-tumor effect inÂvivo. European Journal of Medicinal Chemistry, 2021, 222, 113582.	5.5	17
15	Effect of Carbonized 2-Methylnaphthalene on the Hydrogen Storage Performance of MgH2. ACS Applied Energy Materials, 2021, 4, 11505-11513.	5.1	5
16	Development of an Integrated High Serum Stability Zwitterionic Polypeptide-Based Nanodrug with Both Rapid Internalization and Endocellular Drug Releasing for Efficient Targeted Chemotherapy. Langmuir, 2021, 37, 14015-14025.	3.5	2
17	Dendrimer-Based Biocompatible Zwitterionic Micelles for Efficient Cellular Internalization and Enhanced Antitumor Effects. ACS Applied Polymer Materials, 2020, 2, 159-171.	4.4	18
18	Polyethyleneimine-oleic acid micelle-stabilized gold nanoparticles for reduction of 4-nitrophenol with enhanced performance. Transition Metal Chemistry, 2020, 45, 31-39.	1.4	15

LONGGANG WANG

#	Article	IF	CITATIONS
19	Green Synthesis of Gold Nanoparticles Using Longan Polysaccharide and their Reduction of 4-nitrophenol and Biological Applications. Nano, 2020, 15, 2050002.	1.0	16
20	Zwitterionic Polypeptide-Based Nanodrug Augments pH-Triggered Tumor Targeting <i>via</i> Prolonging Circulation Time and Accelerating Cellular Internalization. ACS Applied Materials & Interfaces, 2020, 12, 46639-46652.	8.0	14
21	Polyethyleneimine-Stabilized Platinum Nanoparticles as Peroxidase Mimic for Colorimetric Detection of Glucose. ACS Omega, 2020, 5, 6800-6808.	3.5	29
22	<i>Ginkgo biloba</i> leaf polysaccharide stabilized palladium nanoparticles with enhanced peroxidase-like property for the colorimetric detection of glucose. RSC Advances, 2020, 10, 7012-7018.	3.6	16
23	Synthesis of gold nanoflowers stabilized with amphiphilic daptomycin for enhanced photothermal antitumor and antibacterial effects. International Journal of Pharmaceutics, 2020, 580, 119231.	5.2	33
24	Metal organic framework (MOF) derived iron phosphide as a highly stable and efficient catalyst for hydrogen evolution. Sustainable Energy and Fuels, 2019, 3, 3078-3084.	4.9	22
25	Ultra-small biocompatible jujube polysaccharide stabilized platinum nanoclusters for glucose detection. Analyst, The, 2019, 144, 5179-5185.	3.5	15
26	Green Synthesis of Jujubeâ€Polysaccharideâ€Stabilized Gold Nanoparticles for Reduction of 4â€Nitrophenol. ChemistrySelect, 2019, 4, 11483-11487.	1.5	9
27	Biocompatible Dendrimer-Encapsulated Palladium Nanoparticles for Oxidation of Morin. ACS Omega, 2019, 4, 18685-18691.	3.5	17
28	ZnCl ₂ "Waterâ€inâ€Saltâ€Electrolyte Transforms the Performance of Vanadium Oxide as a Zn Battery Cathode. Advanced Functional Materials, 2019, 29, 1902653.	14.9	213
29	Polyethyleneimine-stabilized palladium nanoparticles for reduction of 4-nitrophenol. Transition Metal Chemistry, 2019, 44, 655-662.	1.4	12
30	Biocompatible bovine serum albumin stabilized platinum nanoparticles for the oxidation of morin. New Journal of Chemistry, 2019, 43, 8774-8780.	2.8	19
31	Highly biocompatible zwitterionic dendrimer-encapsulated platinum nanoparticles for sensitive detection of glucose in complex medium. New Journal of Chemistry, 2019, 43, 9076-9083.	2.8	21
32	Highly biocompatible jujube polysaccharide-stabilized palladium nanoparticles with excellent catalytic performance. New Journal of Chemistry, 2019, 43, 7646-7652.	2.8	20
33	Green synthesis of palladium nanoparticles using lentinan for catalytic activity and biological applications. RSC Advances, 2019, 9, 38265-38270.	3.6	31
34	Highly stable and biocompatible zwitterionic dendrimer-encapsulated palladium nanoparticles that maintain their catalytic activity in bacterial solution. New Journal of Chemistry, 2018, 42, 19740-19748.	2.8	15
35	Enhanced glucose detection using dendrimer encapsulated gold nanoparticles benefiting from their zwitterionic surface. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 2267-2280.	3.5	10
36	Enhanced biocompatibility of PAMAM dendrimers benefiting from tuning their surface charges. Materials Science and Engineering C, 2018, 93, 332-340.	7.3	28

LONGGANG WANG

#	Article	IF	CITATIONS
37	Highly water-soluble, pH sensitive and biocompatible PAMAM â€~dendrizyme' to maintain catalytic activity in complex medium. Materials Science and Engineering C, 2017, 78, 315-323.	7.3	11
38	Gold nanoshell-based betulinic acid liposomes for synergistic chemo-photothermal therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1891-1900.	3.3	73
39	Highly stable and biocompatible dendrimer-encapsulated gold nanoparticle catalysts for the reduction of 4-nitrophenol. New Journal of Chemistry, 2017, 41, 8399-8406.	2.8	33
40	Surface protonation/deprotonation controlled instant affinity switch of nano drug vehicle (NDV) for pH triggered tumor cell targeting. Biomaterials, 2015, 62, 116-127.	11.4	49
41	Development of Robust and Recoverable Ultralow-Fouling Coatings Based on Poly(carboxybetaine) Ester Analogue. ACS Applied Materials & Interfaces, 2015, 7, 16938-16945.	8.0	32
42	Development of a Protein Mimic with Peptide Ligands to Enhance Specific Sensing and Targeting by the Zwitterionic Surface Engineering of Poly(amido amine) Dendrimers. Advanced Materials Interfaces, 2014, 1, 1300059.	3.7	4
43	Highly hemocompatible zwitterionic micelles stabilized by reversible cross-linkage for anti-cancer drug delivery. Colloids and Surfaces B: Biointerfaces, 2014, 115, 384-390.	5.0	31
44	Development of biocompatible PAMAM â€ [~] dendrizyme' to maintain catalytic activity in biological complex medium. Journal of Materials Chemistry B, 2013, 1, 4259.	5.8	12
45	Reducing the Cytotoxity of Poly(amidoamine) Dendrimers by Modification of a Single Layer of Carboxybetaine. Langmuir, 2013, 29, 8914-8921.	3.5	49