Min Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5698536/publications.pdf

Version: 2024-02-01

93	5,980	36 h-index	74
papers	citations		g-index
94	94	94	7210 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Blood extracellular vesicles carrying synaptic function―and brain―elated proteins as potential biomarkers for Alzheimer's disease. Alzheimer's and Dementia, 2023, 19, 909-923.	0.8	21
2	Ethanol extract of Liriodendron chinense (Hemsl.) Sarg barks attenuates hyperuricemic nephropathy by inhibiting renal fibrosis and inflammation in mice. Journal of Ethnopharmacology, 2021, 264, 113278.	4.1	24
3	Reduced erythrocytic CHCHD2 mRNA is associated with brain pathology of Parkinson's disease. Acta Neuropathologica Communications, 2021, 9, 37.	5.2	8
4	Development of a Sensitive Diagnostic Assay for Parkinson Disease Quantifying α-Synuclein–Containing Extracellular Vesicles. Neurology, 2021, 96, e2332-e2345.	1.1	18
5	Case Report: Efficiency of Embolization Microcoils for the Repair of Brachiocephalic Vein Perforation During Hemodialysis Catheter Placement. Frontiers in Medicine, 2021, 8, 726120.	2.6	1
6	Pharmacologic inhibiting STAT3 delays the progression of kidney fibrosis in hyperuricemia-induced chronic kidney disease. Life Sciences, 2021, 285, 119946.	4.3	13
7	Coniferaldehyde attenuates Alzheimer's pathology <i>via</i> activation of Nrf2 and its targets. Theranostics, 2020, 10, 179-200.	10.0	37
8	Inhibition of Fatty Acid–Binding Protein 4 Attenuated Kidney Fibrosis by Mediating Macrophage-to-Myofibroblast Transition. Frontiers in Immunology, 2020, 11, 566535.	4.8	22
9	Pharmacological inhibition of fatty acid-binding protein 4 alleviated kidney inflammation and fibrosis in hyperuricemic nephropathy. European Journal of Pharmacology, 2020, 887, 173570.	3.5	28
10	Immunoregulation of microglial polarization: an unrecognized physiological function of $\hat{l}\pm$ -synuclein. Journal of Neuroinflammation, 2020, 17, 272.	7.2	22
11	Reduced oligodendrocyte exosome secretion in multiple system atrophy involves SNARE dysfunction. Brain, 2020, 143, 1780-1797.	7.6	66
12	Erythrocytic α-synuclein contained in microvesicles regulates astrocytic glutamate homeostasis: a new perspective on Parkinson's disease pathogenesis. Acta Neuropathologica Communications, 2020, 8, 102.	5.2	26
13	Phosphoproteomic and Kinomic Signature of Clinically Aggressive Grade I (1.5) Meningiomas Reveals RB1 Signaling as a Novel Mediator and Biomarker. Clinical Cancer Research, 2020, 26, 193-205.	7.0	6
14	Role of Fatty Acid Binding Protein 4 (FABP4) in Kidney Disease. Current Medicinal Chemistry, 2020, 27, 3657-3664.	2.4	20
15	Mechanistic Insights of Soluble Uric Acid-related Kidney Disease. Current Medicinal Chemistry, 2020, 27, 5056-5066.	2.4	22
16	Anti-diabetic vanadyl complexes reduced Alzheimer's disease pathology independent of amyloid plaque deposition. Science China Life Sciences, 2019, 62, 126-139.	4.9	34
17	Microbial and metabolomic remodeling by a formula of Sichuan dark tea improves hyperlipidemia in apoE-deficient mice. PLoS ONE, 2019, 14, e0219010.	2.5	18
18	Extracellular microvesicles-derived from microglia treated with unaggregated α-synuclein attenuate mitochondrial fission and toxicity-induced by Parkinsonian toxin MPP+. Biochemical and Biophysical Research Communications, 2019, 517, 642-647.	2.1	13

#	Article	IF	CITATIONS
19	New windows into the brain: Central nervous system-derived extracellular vesicles in blood. Progress in Neurobiology, 2019, 175, 96-106.	5.7	121
20	Erythrocytic α-Synuclein as a potential biomarker for Parkinson's disease. Translational Neurodegeneration, 2019, 8, 15.	8.0	65
21	Understanding the gut–kidney axis among biopsy-proven diabetic nephropathy, type 2 diabetes mellitus and healthy controls: an analysis of the gut microbiota composition. Acta Diabetologica, 2019, 56, 581-592.	2.5	110
22	<scp>ALYREF</scp> links 3′â€end processing to nuclear export of nonâ€polyadenylated <scp>mRNA</scp> s. EMBO Journal, 2019, 38, .	7.8	30
23	Impact of Pre-Analytical Differences on Biomarkers in the ADNI and PPMI Studies: Implications in the Era of Classifying Disease Based on Biomarkers. Journal of Alzheimer's Disease, 2019, 69, 263-276.	2.6	13
24	A U2-snRNP–independent role of SF3b in promoting mRNA export. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7837-7846.	7.1	13
25	Pterostilbene, a bioactive component of blueberries, alleviates renal fibrosis in a severe mouse model of hyperuricemic nephropathy. Biomedicine and Pharmacotherapy, 2019, 109, 1802-1808.	5.6	38
26	Mass spectrometry: A platform for biomarker discovery and validation for Alzheimer's and Parkinson's diseases. Journal of Neurochemistry, 2019, 151, 397-416.	3.9	34
27	Combining clinical and biofluid markers for early Parkinson's disease detection. Annals of Clinical and Translational Neurology, 2018, 5, 109-114.	3.7	10
28	A Longitudinal Study of Total and Phosphorylated α-Synuclein with Other Biomarkers in Cerebrospinal Fluid of Alzheimer's Disease and Mild Cognitive Impairment. Journal of Alzheimer's Disease, 2018, 61, 1541-1553.	2.6	29
29	Kinome and phosphoproteome of high-grade meningiomas reveal AKAP12 as a central regulator of aggressiveness and its possible role in progression. Scientific Reports, 2018, 8, 2098.	3.3	42
30	Plasma $\hat{l}\pm$ -synuclein and cognitive impairment in the Parkinson's Associated Risk Syndrome: A pilot study. Neurobiology of Disease, 2018, 116, 53-59.	4.4	29
31	Cerebrospinal fluid αâ€synuclein contributes to the differential diagnosis of Alzheimer's disease. Alzheimer's and Dementia, 2018, 14, 1052-1062.	0.8	34
32	FP420PHARMACOLOGICAL INHIBITION OF FATTY ACID BINDING PROTEIN-4 (FABP4) PROTECTS AGAINST DIABETIC NEPHROPATHY IN DB/DB MICE. Nephrology Dialysis Transplantation, 2018, 33, i176-i177.	0.7	0
33	FPO41INHIBITION OF FATTY ACID BINDING PROTEIN-4 (FABP4) ALLEVIATES HYPERURICEMIC NEPHROPATHY. Nephrology Dialysis Transplantation, 2018, 33, i61-i61.	0.7	0
34	Intronless mRNAs transit through nuclear speckles to gain export competence. Journal of Cell Biology, 2018, 217, 3912-3929.	5.2	40
35	Selective Histone Deacetylase 6 Inhibitor 23BB Alleviated Rhabdomyolysis-Induced Acute Kidney Injury by Regulating Endoplasmic Reticulum Stress and Apoptosis. Frontiers in Pharmacology, 2018, 9, 274.	3.5	29
36	Pharmacological Inhibition of Fatty Acid-Binding Protein 4 (FABP4) Protects Against Rhabdomyolysis-Induced Acute Kidney Injury. Frontiers in Pharmacology, 2018, 9, 917.	3.5	35

#	Article	IF	Citations
37	Mass-Spectrometry-Based Method To Quantify in Parallel Tau and Amyloid β 1–42 in CSF for the Diagnosis of Alzheimer's Disease. Journal of Proteome Research, 2017, 16, 1228-1238.	3.7	30
38	Catheter Failure and Mortality in Hemodialysis Patients with Tunneled Cuffed Venous Catheters in a Single Center. Blood Purification, 2017, 43, 321-326.	1.8	9
39	Comparative Proteomic Profiling Using Two-Dimensional Gel Electrophoresis and Identification via LC-MS/MS Reveals Novel Protein Biomarkers to Identify Aggressive Subtypes of WHO Grade I Meningioma. Journal of Neurological Surgery, Part B: Skull Base, 2017, 78, 371-379.	0.8	10
40	An alphaâ€synuclein MRM assay with diagnostic potential for Parkinson's disease and monitoring disease progression. Proteomics - Clinical Applications, 2017, 11, 1700045.	1.6	9
41	ALYREF mainly binds to the $5\hat{a} \in \mathbb{Z}^2$ and the $3\hat{a} \in \mathbb{Z}^2$ regions of the mRNA in vivo. Nucleic Acids Research, 2017, 45, 9640-9653.	14.5	87
42	Microinjection and Fluorescence In Situ Hybridization Assay for Studying mRNA Export in Mammalian Cells. Methods in Molecular Biology, 2017, 1648, 95-102.	0.9	0
43	Pharmacological Inhibition of Macrophage Toll-like Receptor 4/Nuclear Factor-kappa B Alleviates Rhabdomyolysis-induced Acute Kidney Injury. Chinese Medical Journal, 2017, 130, 2163-2169.	2.3	23
44	Anti-Inflammatory Pyranochalcone Derivative Attenuates LPS-Induced Acute Kidney Injury via Inhibiting TLR4/NF-κB Pathway. Molecules, 2017, 22, 1683.	3.8	41
45	Transmission of α-synuclein-containing erythrocyte-derived extracellular vesicles across the blood-brain barrier via adsorptive mediated transcytosis: another mechanism for initiation and progression of Parkinson's disease?. Acta Neuropathologica Communications, 2017, 5, 71.	5.2	188
46	Renal Protective Effects of $17\hat{l}^2$ -Estradiol on Mice with Acute Aristolochic Acid Nephropathy. Molecules, 2016, 21, 1391.	3.8	22
47	CNS tau efflux via exosomes is likely increased in Parkinson's disease but not in Alzheimer's disease. Alzheimer's and Dementia, 2016, 12, 1125-1131.	0.8	154
48	Tau Proteins Cross the Blood-Brain Barrier. Journal of Alzheimer's Disease, 2016, 55, 411-419.	2.6	50
49	Transcriptomic Profiling of Extracellular RNAs Present in Cerebrospinal Fluid Identifies Differentially Expressed Transcripts in Parkinson's Disease. Journal of Parkinson's Disease, 2016, 6, 109-117.	2.8	40
50	Premature termination codons are recognized in the nucleus in a reading-frame-dependent manner. Cell Discovery, 2015, 1, .	6.7	34
51	Identification of Synaptosomal Proteins Binding to Monomeric and Oligomeric α-Synuclein. PLoS ONE, 2015, 10, e0116473.	2.5	63
52	Diagnostic Values of Cerebrospinal Fluid T-Tau and A \hat{l}^2 42 using Meso Scale Discovery Assays for Alzheimer's Disease, 2015, 45, 709-719.	2.6	28
53	Phosphorylated α-synuclein in Parkinson's disease: correlation depends on disease severity. Acta Neuropathologica Communications, 2015, 3, 7.	5 . 2	74
54	Cerebrospinal Fluid Peptides as Potential Parkinson Disease Biomarkers: A Staged Pipeline for Discovery and Validation*. Molecular and Cellular Proteomics, 2015, 14, 544-555.	3.8	51

#	Article	IF	Citations
55	Proteomic profiling in MPTP monkey model for early Parkinson disease biomarker discovery. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 779-787.	2.3	25
56	CSF tau and $\tan/A\hat{1}^2$ 42 predict cognitive decline in Parkinson's disease. Parkinsonism and Related Disorders, 2015, 21, 271-276.	2.2	81
57	Excessive activation of the alternative complement pathway in autosomal dominant polycystic kidney disease. Journal of Internal Medicine, 2014, 276, 470-485.	6.0	42
58	Cerebrospinal Fluid \hat{l} ±-Synuclein Predicts Cognitive Decline in Parkinson Disease Progression in the DATATOP Cohort. American Journal of Pathology, 2014, 184, 966-975.	3.8	126
59	Targeted Discovery and Validation of Plasma Biomarkers of Parkinson's Disease. Journal of Proteome Research, 2014, 13, 4535-4545.	3.7	30
60	Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson's disease. Acta Neuropathologica, 2014, 128, 639-650.	7.7	504
61	Proteomic Analysis of Saliva from Patients with Oral Chronic Graft-Versus-Host Disease. Biology of Blood and Marrow Transplantation, 2014, 20, 1048-1055.	2.0	35
62	Cheek cell–derived α-synuclein and DJ-1 do not differentiate Parkinson's disease from control. Neurobiology of Aging, 2014, 35, 418-420.	3.1	30
63	Longitudinal assessment of tau and amyloid beta in cerebrospinal fluid of Parkinson disease. Acta Neuropathologica, 2013, 126, 671-682.	7.7	76
64	Quantitative Characterization of Glycoproteins in Neurodegenerative Disorders Using iTRAQ. Methods in Molecular Biology, 2013, 951, 279-296.	0.9	11
65	α-Synuclein in Cerebrospinal Fluid of Alzheimer's Disease and Mild Cognitive Impairment. Journal of Alzheimer's Disease, 2013, 36, 679-688.	2.6	74
66	Phosphorylated α-Synuclein in Parkinson's Disease. Science Translational Medicine, 2012, 4, 121ra20.	12.4	223
67	Cerebrospinal fluid amyloid \hat{l}^2 and tau in <i>LRRK2</i> mutation carriers. Neurology, 2012, 78, 55-61.	1.1	39
68	DJ-1 isoforms in whole blood as potential biomarkers of Parkinson disease. Scientific Reports, 2012, 2, 954.	3.3	90
69	DJ-1 and αSYN in LRRK2 CSF do not correlate with striatal dopaminergic function. Neurobiology of Aging, 2012, 33, 836.e5-836.e7.	3.1	34
70	Complement 3 and Factor H in Human Cerebrospinal Fluid in Parkinson's Disease, Alzheimer's Disease, and Multiple-System Atrophy. American Journal of Pathology, 2011, 178, 1509-1516.	3.8	97
71	CSF Î \pm -synuclein, tau, and amyloid Î 2 in Parkinson's disease. Lancet Neurology, The, 2011, 10, 681.	10.2	15
72	Cerebrospinal fluid biomarkers for Parkinson disease diagnosis and progression. Annals of Neurology, 2011, 69, 570-580.	5.3	371

#	Article	IF	CITATIONS
73	Salivary α-synuclein and DJ-1: potential biomarkers for Parkinson's disease. Brain, 2011, 134, e178-e178.	7.6	196
74	Salivary Tau Species are Potential Biomarkers of Alzheimer's Disease. Journal of Alzheimer's Disease, 2011, 27, 299-305.	2.6	153
75	Glycoproteomics in neurodegenerative diseases. Mass Spectrometry Reviews, 2010, 29, 79-125.	5.4	99
76	CSF AÎ 2 (sub>42 (sub> and tau in Parkinson's disease with cognitive impairment. Movement Disorders, 2010, 25, 2682-2685.	3.9	162
77	Identification of ciliary neurotrophic factor receptor α as a mediator of neurotoxicity induced by αâ€synuclein. Proteomics, 2010, 10, 2138-2150.	2.2	12
78	Biomarkers for Cognitive Impairment in Parkinson Disease. Brain Pathology, 2010, 20, 660-671.	4.1	33
79	SNCA Variant Associated With Parkinson Disease and Plasma α-Synuclein Level. Archives of Neurology, 2010, 67, 1350-6.	4.5	157
80	DJ-1 and α-synuclein in human cerebrospinal fluid as biomarkers of Parkinson's disease. Brain, 2010, 133, 713-726.	7.6	575
81	Quantitative Proteomic Analysis of Oligodendrogliomas With and Without $1p/19q$ Deletion. Journal of Proteome Research, 2010, 9, 2610-2618.	3.7	12
82	Significance and confounders of peripheral DJ-1 and alpha-synuclein in Parkinson's disease. Neuroscience Letters, 2010, 480, 78-82.	2.1	184
83	Rab11a and HSP90 Regulate Recycling of Extracellular α-Synuclein. Journal of Neuroscience, 2009, 29, 1480-1485.	3.6	128
84	Biomarker discovery in neurodegenerative diseases: A proteomic approach. Neurobiology of Disease, 2009, 35, 157-164.	4.4	102
85	Identification of Glutathione S-Transferase Pi as a Protein Involved in Parkinson Disease Progression. American Journal of Pathology, 2009, 175, 54-65.	3.8	7 5
86	Identification of proteins in human substantia nigra. Proteomics - Clinical Applications, 2008, 2, 776-782.	1.6	33
87	Proteomic identification of proteins in the human brain: Towards a more comprehensive understanding of neurodegenerative disease. Proteomics - Clinical Applications, 2008, 2, 1484-1497.	1.6	20
88	Mortalin: A Protein Associated With Progression of Parkinson Disease?. Journal of Neuropathology and Experimental Neurology, 2008, 67, 117-124.	1.7	77
89	Proteomics Identification of Proteins in Human Cortex Using Multidimensional Separations and MALDI Tandem Mass Spectrometer. Molecular and Cellular Proteomics, 2007, 6, 1818-1823.	3.8	44
90	Four new monomeric insulins obtained by alanine scanning the dimer-forming surface of the insulin molecule. Protein Engineering, Design and Selection, 2000, 13, 779-782.	2.1	30

#	Article	IF	CITATIONS
91	Comparison of the Growth Promoting Effects of Serum Transferrins from Different Animals on Mouse Mammary Tumor Cell Line GR2H6. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao Acta Biochimica Et Biophysica Sinica, 1998, 30, 101-103.	0.1	0
92	Studies on growthâ€promoting action of insulin: mitogenic activity of insulin and its analogues in mouse mammary tumor cells. IUBMB Life, 1997, 43, 705-711.	3.4	1
93	An Assay System for the Growth Promoting Activity of Insulin by (3)H-thymidine Incorporation. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao Acta Biochimica Et Biophysica Sinica, 1997, 29, 88-91.	0.1	0