
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5698403/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Therapeutic Potential of Apigenin. International Journal of Molecular Sciences, 2019, 20, 1305.	1.8	639
2	Resveratrol: A Double-Edged Sword in Health Benefits. Biomedicines, 2018, 6, 91.	1.4	589
3	Kaempferol: A Key Emphasis to Its Anticancer Potential. Molecules, 2019, 24, 2277.	1.7	416
4	Turmeric and Its Major Compound Curcumin on Health: Bioactive Effects and Safety Profiles for Food, Pharmaceutical, Biotechnological and Medicinal Applications. Frontiers in Pharmacology, 2020, 11, 01021.	1.6	345
5	Carvacrol and human health: A comprehensive review. Phytotherapy Research, 2018, 32, 1675-1687.	2.8	330
6	Antidiabetic Potential of Medicinal Plants and Their Active Components. Biomolecules, 2019, 9, 551.	1.8	325
7	The therapeutic potential of curcumin: A review of clinical trials. European Journal of Medicinal Chemistry, 2019, 163, 527-545.	2.6	319
8	Thymol, thyme, and other plant sources: Health and potential uses. Phytotherapy Research, 2018, 32, 1688-1706.	2.8	315
9	Piper Species: A Comprehensive Review on Their Phytochemistry, Biological Activities and Applications. Molecules, 2019, 24, 1364.	1.7	259
10	Plants of the Genus Zingiber as a Source of Bioactive Phytochemicals: From Tradition to Pharmacy. Molecules, 2017, 22, 2145.	1.7	169
11	The Therapeutic Potential of Anthocyanins: Current Approaches Based on Their Molecular Mechanism of Action. Frontiers in Pharmacology, 2020, 11, 1300.	1.6	152
12	Antioxidants: Positive or Negative Actors?. Biomolecules, 2018, 8, 124.	1.8	150
13	Pharmacological Properties of Chalcones: A Review of Preclinical Including Molecular Mechanisms and Clinical Evidence. Frontiers in Pharmacology, 2020, 11, 592654.	1.6	140
14	Antiulcer Agents: From Plant Extracts to Phytochemicals in Healing Promotion. Molecules, 2018, 23, 1751.	1.7	133
15	Phytosterols: From Preclinical Evidence to Potential Clinical Applications. Frontiers in Pharmacology, 2020, 11, 599959.	1.6	133
16	Allicin and health: A comprehensive review. Trends in Food Science and Technology, 2019, 86, 502-516.	7.8	127
17	Apigenin as an anticancer agent. Phytotherapy Research, 2020, 34, 1812-1828.	2.8	121
18	Myricetin bioactive effects: moving from preclinical evidence to potential clinical applications. BMC Complementary Medicine and Therapies, 2020, 20, 241.	1.2	118

#	Article	IF	CITATIONS
19	Synergistic Effects of Plant Derivatives and Conventional Chemotherapeutic Agents: An Update on the Cancer Perspective. Medicina (Lithuania), 2019, 55, 110.	0.8	117
20	Curcumin's Nanomedicine Formulations for Therapeutic Application in Neurological Diseases. Journal of Clinical Medicine, 2020, 9, 430.	1.0	116
21	Aloe Genus Plants: From Farm to Food Applications and Phytopharmacotherapy. International Journal of Molecular Sciences, 2018, 19, 2843.	1.8	114
22	Melatonin in Medicinal and Food Plants: Occurrence, Bioavailability, and Health Potential for Humans. Cells, 2019, 8, 681.	1.8	108
23	Plants of Genus Mentha: From Farm to Food Factory. Plants, 2018, 7, 70.	1.6	107
24	Cucurbits Plants: A Key Emphasis to Its Pharmacological Potential. Molecules, 2019, 24, 1854.	1.7	106
25	Plant-Derived Bioactives and Oxidative Stress-Related Disorders: A Key Trend towards Healthy Aging and Longevity Promotion. Applied Sciences (Switzerland), 2020, 10, 947.	1.3	103
26	Programmed Cell Death, from a Cancer Perspective: An Overview. Molecular Diagnosis and Therapy, 2018, 22, 281-295.	1.6	101
27	<i>Echinacea</i> plants as antioxidant and antibacterial agents: From traditional medicine to biotechnological applications. Phytotherapy Research, 2018, 32, 1653-1663.	2.8	100
28	Matricaria genus as a source of antimicrobial agents: From farm to pharmacy and food applications. Microbiological Research, 2018, 215, 76-88.	2.5	99
29	Bioactive compounds and health benefits of edible Rumex species-A review. Cellular and Molecular Biology, 2018, 64, 27-34.	0.3	99
30	Plants of the <i>Melaleuca</i> Genus as Antimicrobial Agents: From Farm to Pharmacy. Phytotherapy Research, 2017, 31, 1475-1494.	2.8	98
31	Medicinal Plants Used in the Treatment of Human Immunodeficiency Virus. International Journal of Molecular Sciences, 2018, 19, 1459.	1.8	98
32	Salvia spp. plants-from farm to food applications and phytopharmacotherapy. Trends in Food Science and Technology, 2018, 80, 242-263.	7.8	93
33	Cinnamomum Species: Bridging Phytochemistry Knowledge, Pharmacological Properties and Toxicological Safety for Health Benefits. Frontiers in Pharmacology, 2021, 12, 600139.	1.6	89
34	Phytotherapeutics in cancer invasion and metastasis. Phytotherapy Research, 2018, 32, 1425-1449.	2.8	88
35	Plant-Derived Bioactives in Oral Mucosal Lesions: A Key Emphasis to Curcumin, Lycopene, Chamomile, Aloe vera, Green Tea and Coffee Properties. Biomolecules, 2019, 9, 106.	1.8	87
36	Ethnobotany of the genus <i>Taraxacum</i> —Phytochemicals and antimicrobial activity. Phytotherapy Research, 2018, 32, 2131-2145.	2.8	85

#	Article	IF	CITATIONS
37	Piperine-A Major Principle of Black Pepper: A Review of Its Bioactivity and Studies. Applied Sciences (Switzerland), 2019, 9, 4270.	1.3	85
38	Probiotics: Versatile Bioactive Components in Promoting Human Health. Medicina (Lithuania), 2020, 56, 433.	0.8	85
39	Nepeta species: From farm to food applications and phytotherapy. Trends in Food Science and Technology, 2018, 80, 104-122.	7.8	83
40	Phytochemicals in Helicobacter pylori Infections: What Are We Doing Now?. International Journal of Molecular Sciences, 2018, 19, 2361.	1.8	75
41	Thymus spp. plants - Food applications and phytopharmacy properties. Trends in Food Science and Technology, 2019, 85, 287-306.	7.8	74
42	Bioactive Compounds and Health Benefits of <i>Artemisia </i> Species. Natural Product Communications, 2019, 14, 1934578X1985035.	0.2	71
43	Tagetes spp. Essential Oils and Other Extracts: Chemical Characterization and Biological Activity. Molecules, 2018, 23, 2847.	1.7	66
44	Veronica Plants—Drifting from Farm to Traditional Healing, Food Application, and Phytopharmacology. Molecules, 2019, 24, 2454.	1.7	66
45	Avocado–Soybean Unsaponifiables: A Panoply of Potentialities to Be Exploited. Biomolecules, 2020, 10, 130.	1.8	66
46	<i>Ficus</i> plants: State of the art from a phytochemical, pharmacological, and toxicological perspective. Phytotherapy Research, 2021, 35, 1187-1217.	2.8	65
47	In vitro and in vivo assessment of free radical scavenging and antioxidant activities of Veronica persica Poir. Cellular and Molecular Biology, 2018, 64, 57-64.	0.3	65
48	Cucurbita Plants: From Farm to Industry. Applied Sciences (Switzerland), 2019, 9, 3387.	1.3	60
49	Epibatidine: A Promising Natural Alkaloid in Health. Biomolecules, 2019, 9, 6.	1.8	59
50	Satyrium nepalense, a high altitude medicinal orchid of Indian Himalayan region: chemical profile and biological activities of tuber extracts. Cellular and Molecular Biology, 2018, 64, 35-43.	0.3	58
51	Therapeutic Applications of Curcumin Nanomedicine Formulations in Cardiovascular Diseases. Journal of Clinical Medicine, 2020, 9, 746.	1.0	57
52	Symphytum Species: A Comprehensive Review on Chemical Composition, Food Applications and Phytopharmacology. Molecules, 2019, 24, 2272.	1.7	52
53	Liposomal Cytarabine as Cancer Therapy: From Chemistry to Medicine. Biomolecules, 2019, 9, 773.	1.8	52
54	Pharmacological Activities of Psoralidin: A Comprehensive Review of the Molecular Mechanisms of Action. Frontiers in Pharmacology, 2020, 11, 571459.	1.6	47

#	Article	IF	CITATIONS
55	Berberis Plants—Drifting from Farm to Food Applications, Phytotherapy, and Phytopharmacology. Foods, 2019, 8, 522.	1.9	46
56	Silymarin antiproliferative and apoptotic effects: Insights into its clinical impact in various types of cancer. Phytotherapy Research, 2019, 33, 2849-2861.	2.8	42
5 7	Anacardium Plants: Chemical,Nutritional Composition and Biotechnological Applications. Biomolecules, 2019, 9, 465.	1.8	42
58	Bioactive compounds and health benefits of edible Rumex species-A review. Cellular and Molecular Biology, 2018, 64, 27-34.	0.3	42
59	Resveratrol, curcumin, paclitaxel and miRNAs mediated regulation of PI3K/Akt/mTOR pathway: go four better to treat bladder cancer. Cancer Cell International, 2020, 20, 560.	1.8	39
60	Dietary supplements, vitamins and minerals as potential interventions against viruses: Perspectives for COVID-19. International Journal for Vitamin and Nutrition Research, 2022, 92, 49-66.	0.6	39
61	Antibacterial activity of some Lamiaceae species against Staphylococcus aureus in yoghurt-based drink (Doogh). Cellular and Molecular Biology, 2018, 64, 71.	0.3	38
62	Nigella Plants – Traditional Uses, Bioactive Phytoconstituents, Preclinical and Clinical Studies. Frontiers in Pharmacology, 2021, 12, 625386.	1.6	37
63	<i>Convolvulus</i> plant—A comprehensive review from phytochemical composition to pharmacy. Phytotherapy Research, 2020, 34, 315-328.	2.8	35
64	Antiviral activity of Veronica persica Poir. on herpes virus infection. Cellular and Molecular Biology, 2018, 64, 11-17.	0.3	35
65	Therapeutic promises of ginkgolide A: A literature-based review. Biomedicine and Pharmacotherapy, 2020, 132, 110908.	2.5	33
66	Nanotechnology-Based Strategies for Berberine Delivery System in Cancer Treatment: Pulling Strings to Keep Berberine in Power. Frontiers in Molecular Biosciences, 2020, 7, 624494.	1.6	30
67	Veronica persica Poir. extract – antibacterial, antifungal and scolicidal activities, and inhibitory potential on acetylcholinesterase, tyrosinase, lipoxygenase and xanthine oxidase. Cellular and Molecular Biology, 2018, 64, 50-56.	0.3	29
68	Lamium Plants—A Comprehensive Review on Health Benefits and Biological Activities. Molecules, 2019, 24, 1913.	1.7	26
69	Epithelial-mesenchymal transition as a target for botanicals in cancer metastasis. Phytomedicine, 2019, 55, 125-136.	2.3	23
70	Curcumin nanoformulations for antimicrobial and wound healing purposes. Phytotherapy Research, 2021, 35, 2487-2499.	2.8	23
71	In vitro and in vivo assessment of free radical scavenging and antioxidant activities of Veronica persica Poir. Cellular and Molecular Biology, 2018, 64, 57-64.	0.3	23
72	Knowledge and Ethical Issues in Organ Transplantation and Organ Donation: Perspectives from Iranian Health Personnel. Annals of Transplantation, 2018, 23, 292-299.	0.5	22

#	Article	IF	CITATIONS
73	<i>Stevia rebaudiana</i> Bertoni bioactive effects: From in vivo to clinical trials towards future therapeutic approaches. Phytotherapy Research, 2019, 33, 2904-2917.	2.8	22
74	Plants of the genus Spinacia: From bioactive molecules to food and phytopharmacological applications. Trends in Food Science and Technology, 2019, 88, 260-273.	7.8	22
75	<i>Rosmarinus</i> plants: Key farm concepts towards food applications. Phytotherapy Research, 2020, 34, 1474-1518.	2.8	22
76	Plants: A Genus Rich in Vital Nutra-pharmaceuticals-A Review. Iranian Journal of Pharmaceutical Research, 2019, 18, 68-89.	0.3	21
77	Satyrium nepalense, a high altitude medicinal orchid of Indian Himalayan region: chemical profile and biological activities of tuber extracts. Cellular and Molecular Biology, 2018, 64, 35-43.	0.3	20
78	Plants of the Genus <i>Lavandula</i> : From Farm to Pharmacy. Natural Product Communications, 2018, 13, 1934578X1801301.	0.2	19
79	Antibacterial potential of Saussurea obvallata petroleum ether extract: A spiritually revered medicinal plant. Cellular and Molecular Biology, 2018, 64, 65-70.	0.3	19
80	Applying an Ethical Framework to Herbal Medicine. Evidence-based Complementary and Alternative Medicine, 2018, 2018, 1-7.	0.5	18
81	Organ Transplantation in Iran; Current State and Challenges with a View on Ethical Consideration. Journal of Clinical Medicine, 2018, 7, 45.	1.0	18
82	Potential Phytopharmacy and Food Applications of <i>Capsicum</i> spp.: A Comprehensive Review. Natural Product Communications, 2018, 13, 1934578X1801301.	0.2	16
83	Antioxidant potential of family Cucurbitaceae with special emphasis on <i>Cucurbita</i> genus: A key to alleviate oxidative stressâ€mediated disorders. Phytotherapy Research, 2021, 35, 3533-3557.	2.8	14
84	Veronica persica Poir. extract - antibacterial, antifungal and scolicidal activities, and inhibitory potential on acetylcholinesterase, tyrosinase, lipoxygenase and xanthine oxidase. Cellular and Molecular Biology, 2018, 64, 50-56.	0.3	14
85	Antiviral activity of Veronica persica Poir. on herpes virus infection. Cellular and Molecular Biology, 2018, 64, 11-17.	0.3	12
86	Antibacterial activity of some Lamiaceae species against Staphylococcus aureus in yoghurt-based drink (Doogh). Cellular and Molecular Biology, 2018, 64, 71-77.	0.3	12
87	Development and antioxidant characterization of Ginger-Mint drink prepared through different extraction techniques. Journal of Food Measurement and Characterization, 2021, 15, 2576-2590.	1.6	11
88	Understanding Camellia sinensis using Omics Technologies along with Endophytic Bacteria and Environmental Roles on Metabolism: A Review. Applied Sciences (Switzerland), 2019, 9, 281.	1.3	10
89	Antifungal activities of coating incorporated with <i>Saccharomyces cerevisiae</i> cell wall mannoprotein on <i>Aspergillus flavus</i> growth and aflatoxin production in pistachio (<i>Pistacia) Tj ETQq1</i>	1 0. 78 4314	rg8T /Overic
90	Antiâ€ <scp><i>Schistosoma mansoni</i></scp> effects of essential oils and their components. Phytotherapy Research, 2020, 34, 1761-1769.	2.8	9

#	Article	IF	CITATIONS
91	Pullulan gum production from low-quality fig syrup using Aureobasidium pullulans. Cellular and Molecular Biology, 2018, 64, 22-26.	0.3	9
92	Antibacterial potential of Saussurea obvallata petroleum ether extract: A spiritually revered medicinal plant. Cellular and Molecular Biology, 2018, 64, 65-70.	0.3	9
93	Athyrium plants - Review on phytopharmacy properties. Journal of Traditional and Complementary Medicine, 2019, 9, 201-205.	1.5	8
94	Organ transplantation and donation from the point of view of medical students in Iran: Ethical aspects and knowledge. Cellular and Molecular Biology, 2018, 64, 91-96.	0.3	8
95	Susceptibility of Leishmania major to Veronica persica Poir. extracts - In vitro and in vivo assays. Cellular and Molecular Biology, 2018, 64, 44.	0.3	8
96	Ethnopharmacology, Phytochemistry and Biological Activities of Native Chilean Plants. Current Pharmaceutical Design, 2021, 27, 953-970.	0.9	7
97	MicroRNAs and Natural Compounds Mediated Regulation of TGF Signaling in Prostate Cancer. Frontiers in Pharmacology, 2020, 11, 613464.	1.6	6
98	Anxiety Therapeutic Interventions of β-Caryophyllene: A Laboratory-Based Study. Natural Product Communications, 2020, 15, 1934578X2096222.	0.2	4
99	Pullulan gum production from low-quality fig syrup using Aureobasidium pullulans. Cellular and Molecular Biology, 2018, 64, 22-26.	0.3	4
100	Susceptibility of Leishmania major to Veronica persica Poir. extracts - In vitro and in vivo assays. Cellular and Molecular Biology, 2018, 64, 44-49.	0.3	4
101	Multivesicular Liposome (Depofoam) in Human Diseases. Iranian Journal of Pharmaceutical Research, 2020, 19, 9-21.	0.3	3