Alena M Sheveleva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/569806/publications.pdf Version: 2024-02-01

		394421	454955
30	1,156	19	30
papers	1,156 citations	h-index	g-index
33	33	33	1446
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Direct Observation of Ammonia Storage in UiO-66 Incorporating Cu(II) Binding Sites. Journal of the American Chemical Society, 2022, 144, 8624-8632.	13.7	24
2	Direct photo-oxidation of methane to methanol over a mono-iron hydroxyl site. Nature Materials, 2022, 21, 932-938.	27.5	77
3	Ultra-thin g-C ₃ N ₄ /MFM-300(Fe) heterojunctions for photocatalytic aerobic oxidation of benzylic carbon centers. Materials Advances, 2021, 2, 5144-5149.	5.4	6
4	Catalytic decomposition of NO2 over a copper-decorated metal–organic framework by non-thermal plasma. Cell Reports Physical Science, 2021, 2, 100349.	5.6	10
5	Electronic Structure of a Diiron Complex: A Multitechnique Experimental Study of [(dppf)Fe(CO) 3]+/0. Inorganic Chemistry, 2021, 60, 2856-2865.	4.0	1
6	High Ammonia Adsorption in MFM-300 Materials: Dynamics and Charge Transfer in Host–Guest Binding. Journal of the American Chemical Society, 2021, 143, 3153-3161.	13.7	67
7	Control of zeolite microenvironment for propene synthesis from methanol. Nature Communications, 2021, 12, 822.	12.8	23
8	The Origin of Catalytic Benzylic Câ^'H Oxidation over a Redoxâ€Active Metal–Organic Framework. Angewandte Chemie - International Edition, 2021, 60, 15243-15247.	13.8	15
9	The Origin of Catalytic Benzylic Câ^'H Oxidation over a Redoxâ€Active Metal–Organic Framework. Angewandte Chemie, 2021, 133, 15371-15375.	2.0	0
10	Construction of C-C bonds via photoreductive coupling of ketones and aldehydes in the metal-organic-framework MFM-300(Cr). Nature Communications, 2021, 12, 3583.	12.8	35
11	Atomically Dispersed Copper Sites in a Metal–Organic Framework for Reduction of Nitrogen Dioxide. Journal of the American Chemical Society, 2021, 143, 10977-10985.	13.7	66
12	Acetylation Rather than H50Q Mutation Impacts the Kinetics of Cu(II) Binding to α‧ynuclein. ChemPhysChem, 2021, 22, 2413-2419.	2.1	4
13	Acetylation Rather than H50Q Mutation Impacts the Kinetics of Cu(II) Binding to αâ€ S ynuclein. ChemPhysChem, 2021, 22, 2380-2380.	2.1	1
14	Quantitative production of butenes from biomass-derived γ-valerolactone catalysed by hetero-atomic MFI zeolite. Nature Materials, 2020, 19, 86-93.	27.5	74
15	Adsorption of Nitrogen Dioxide in a Redox-Active Vanadium Metal–Organic Framework Material. Journal of the American Chemical Society, 2020, 142, 15235-15239.	13.7	50
16	Identical anomalous Raman relaxation exponent in a family of single ion magnets: towards reliable Raman relaxation determination?. Dalton Transactions, 2020, 49, 11942-11949.	3.3	16
17	Electro-reduction of carbon dioxide at low over-potential at a metal–organic framework decorated cathode. Nature Communications, 2020, 11, 5464.	12.8	62
18	Methane Activation on H-ZSM-5 Zeolite with Low Copper Loading. The Nature of Active Sites and Intermediates Identified with the Combination of Spectroscopic Methods. Inorganic Chemistry, 2020, 59, 2037-2050.	4.0	25

Alena M Sheveleva

#	Article	IF	CITATIONS
19	Magnetization Dynamics and Coherent Spin Manipulation of a Propeller Gd(III) Complex with the Smallest Helicene Ligand. Journal of Physical Chemistry Letters, 2020, 11, 1508-1515.	4.6	24
20	lodine Adsorption in a Redox-Active Metal–Organic Framework: Electrical Conductivity Induced by Hostâ^'Guest Charge-Transfer. Inorganic Chemistry, 2019, 58, 14145-14150.	4.0	74
21	Understanding Hysteresis in Carbon Dioxide Sorption in Porous Metal–Organic Frameworks. Inorganic Chemistry, 2019, 58, 6811-6820.	4.0	19
22	Capture of nitrogen dioxide and conversion to nitric acid in a porous metal–organic framework. Nature Chemistry, 2019, 11, 1085-1090.	13.6	116
23	New oxidovanadium(<scp>iv</scp>) complex with a BIAN ligand: synthesis, structure, redox properties and catalytic activity. New Journal of Chemistry, 2018, 42, 16200-16210.	2.8	42
24	Reversible adsorption of nitrogen dioxide within a robust porous metal–organic framework. Nature Materials, 2018, 17, 691-696.	27.5	162
25	Revisiting the Incorporation of Ti(IV) in UiO-type Metal–Organic Frameworks: Metal Exchange versus Grafting and Their Implications on Photocatalysis. Chemistry of Materials, 2017, 29, 8963-8967.	6.7	64
26	Probing Gas Adsorption in Metal–Organic Framework ZIF-8 by EPR of Embedded Nitroxides. Journal of Physical Chemistry C, 2017, 121, 19880-19886.	3.1	19
27	Continuous Wave and Time-Resolved Electron Paramagnetic Resonance Study of Photoinduced Radicals in Fluoroacrylic Porous Polymer Films. Journal of Physical Chemistry C, 2016, 120, 14767-14773.	3.1	2
28	Mobility and Reactivity of 4-Substituted TEMPO Derivatives in Metal–Organic Framework MIL-53(Al). Journal of Physical Chemistry C, 2016, 120, 10698-10704.	3.1	23
29	Inherent Microporosity and Photostability of Fluoroacrylic Polymer Films Studied by Electron Paramagnetic Resonance of Nitroxide Spin Probes. Applied Magnetic Resonance, 2015, 46, 523-540.	1.2	5
30	Structural Dynamics in a "Breathing―Metal–Organic Framework Studied by Electron Paramagnetic Resonance of Nitroxide Spin Probes. Journal of Physical Chemistry Letters, 2014, 5, 20-24.	4.6	48