Jiang Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5697718/publications.pdf

Version: 2024-02-01

933447 839539 23 334 10 18 h-index citations g-index papers 23 23 23 196 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Polymer-Based Ultrasonic Motors Utilizing High-Order Vibration Modes. IEEE/ASME Transactions on Mechatronics, 2018, 23, 788-799.	5.8	57
2	Anisotropy of the highâ€power piezoelectric properties of Pb(Zr,Ti)O ₃ . Journal of the American Ceramic Society, 2019, 102, 6008-6017.	3.8	38
3	Piezoelectric Motor Utilizing an Alumina/PZT Transducer. IEEE Transactions on Industrial Electronics, 2020, 67, 6762-6772.	7.9	36
4	Ultrasonic motors with polymer-based vibrators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62, 2169-2178.	3.0	27
5	A Rotary Ultrasonic Motor Operating in Torsional/Bending Modes With High Torque Density and High Power Density. IEEE Transactions on Industrial Electronics, 2021, 68, 6109-6120.	7.9	26
6	Structural parameter study on polymer-based ultrasonic motor. Smart Materials and Structures, 2017, 26, 115022.	3.5	21
7	Synthesis of a novel smectic liquid crystalline glass and characterization of its charge carrier transport properties. Journal of Materials Chemistry, 2011, 21, 8045.	6.7	18
8	Traveling wave ultrasonic motor using polymer-based vibrator. Japanese Journal of Applied Physics, 2016, 55, 018001.	1.5	15
9	Measurement of mechanical quality factors of polymers in flexural vibration for high-power ultrasonic application. Ultrasonics, 2016, 69, 74-82.	3.9	14
10	A Linear Piezoelectric Actuator Using "A-Shaped―Structure. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 1382-1391.	3.0	12
11	Ultrasonic motors with poly phenylene sulfide/alumina/PZT triple-layered vibrators. Sensors and Actuators A: Physical, 2018, 284, 158-167.	4.1	11
12	A traveling-wave ultrasonic motor utilizing a ring-shaped alumina/PZT vibrator. Smart Materials and Structures, 2019, 28, 125017.	3.5	10
13	Structural parameter study of dual transducers-type ultrasonic levitation-based transportation system. Smart Materials and Structures, 2021, 30, 045009.	3.5	9
14	Vibration characteristics of polymer-based Langevin transducers. Smart Materials and Structures, 2018, 27, 095013.	3.5	8
15	Enhancement in mechanical quality factors of poly phenylene sulfide under high-amplitude ultrasonic vibration through thermal annealing. Ultrasonics, 2019, 91, 52-61.	3.9	7
16	A Two-DOF Linear Ultrasonic Motor With High Thrust Force Density and High Power Density Utilizing Torsional/Centrosymmetric-Bending/ Symmetric-Bending Modes. IEEE Transactions on Industrial Electronics, 2022, 69, 8220-8230.	7.9	7
17	A Traveling-Wave Linear Ultrasonic Motor Driven by Two Torsional Vibrations: Design, Fabrication, and Performance Evaluation. IEEE Access, 2020, 8, 122554-122564.	4.2	6
18	Poly-Phenylene-Sulfide Wedge Transducer for Exciting Surface Acoustic Waves for Removing Droplets on a Glass Plate. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 3378-3385.	3.0	4

#	Article	IF	CITATION
19	Airborne ultrasonic transducer using polymer-based elastomer with high output-to-weight ratio. Japanese Journal of Applied Physics, 2015, 54, 087201.	1.5	3
20	Ultrasonic motors with polymer vibrator. , 2014, , .		2
21	A Dumbbell Shaped Piezoelectric Motor Driven by the First-Order Torsional and the First-Order Flexural Vibrations. Actuators, 2020, 9, 124.	2.3	2
22	Magnetic field sensor using a polymer-based vibrator. Measurement Science and Technology, 2016, 27, 097002.	2.6	1
23	Non-metal Piezoelectric Motor Utilizing Langevin-Type Alumina/PZT Transducer Working in Orthogonal Bending Modes. Lecture Notes in Computer Science, 2021, , 342-352.	1.3	O