Pedro J Perez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5697673/publications.pdf

Version: 2024-02-01

208 papers

11,002 citations

26630 56 h-index 95 g-index

257 all docs

257 docs citations

times ranked

257

7208 citing authors

#	Article	IF	CITATIONS
1	Gold nanoparticle-catalysed functionalization of carbon–hydrogen bonds by carbene transfer reactions. Dalton Transactions, 2022, 51, 5250-5256.	3.3	2
2	Mechanistic Studies on the Synthesis of Pyrrolidines and Piperidines via Copper-Catalyzed Intramolecular Câ€"H Amination. Organometallics, 2022, 41, 1099-1105.	2.3	4
3	Selective Functionalization of Arene C(sp ²)–H Bonds by Gold Catalysis: The Role of Carbene Substituents. ACS Catalysis, 2022, 12, 6851-6856.	11.2	7
4	Introducing the Catalytic Amination of Silanes via Nitrene Insertion. Journal of the American Chemical Society, 2022, 144, 10608-10614.	13.7	6
5	Direct Benzene Hydroxylation with Dioxygen Induced by Copper Complexes: Uncovering the Active Species by DFT Calculations. Organometallics, 2022, 41, 1892-1904.	2.3	4
6	Development of Molecular Complexity through Nitrene-Transfer Reactions Catalyzed by Copper and Silver Scorpionate Complexes. Synlett, 2021, 32, 763-774.	1.8	4
7	Recent Advances in Copper-Catalyzed Radical C–H Bond Activation Using N–F Reagents. Synthesis, 2021, 53, 51-64.	2.3	25
8	Grapheneâ€Supported, Wellâ€Defined Metalâ€Based Catalysts for Câ^'H Bond Functionalization and Related Reactions. Advanced Synthesis and Catalysis, 2021, 363, 1740-1755.	4.3	4
9	Two Copper-Carbenes from One Diazo Compound. Journal of the American Chemical Society, 2021, 143, 4837-4843.	13.7	20
10	Metal-Catalyzed Postpolymerization Strategies for Polar Group Incorporation into Polyolefins Containing Câ \in "C, Câ \in C, and Aromatic Rings. Macromolecules, 2021, 54, 4971-4985.	4.8	26
11	Copperâ€Catalyzed Dehydrogenative Amidation of Light Alkanes. Angewandte Chemie - International Edition, 2021, 60, 18467-18471.	13.8	12
12	Copperâ€Catalyzed Dehydrogenative Amidation of Light Alkanes. Angewandte Chemie, 2021, 133, 18615-18619.	2.0	6
13	Heterogeneous Olefin Aziridination Reactions Catalyzed by Polymerâ€Bound Tris(triazolyl)methane Copper Complexes. European Journal of Inorganic Chemistry, 2021, 2021, 3727-3730.	2.0	3
14	Make It Green: Copper atalyzed Olefin Aziridination in Water with an Iminoiodonane. European Journal of Inorganic Chemistry, 2021, 2021, 5091-5095.	2.0	4
15	The Tp x M Core in C sp 3 \hat{a} \hat{e} H Bond Functionalization Reactions: Comparing Carbene, Nitrene, and Oxo Insertion Processes (Tp x = Scorpionate Ligand; M = Cu, Ag). European Journal of Inorganic Chemistry, 2020, 2020, 879-885.	2.0	7
16	A Quantitative Model for Alkane Nucleophilicity Based on Câ^'H Bond Structural/Topological Descriptors. Angewandte Chemie, 2020, 132, 3136-3140.	2.0	4
17	A Quantitative Model for Alkane Nucleophilicity Based on Câ^'H Bond Structural/Topological Descriptors. Angewandte Chemie - International Edition, 2020, 59, 3112-3116.	13.8	18
18	Copper-catalysed radical reactions of alkenes, alkynes and cyclopropanes with N–F reagents. Organic and Biomolecular Chemistry, 2020, 18, 8757-8770.	2.8	14

#	Article	IF	CITATIONS
19	Aerobic intramolecular carbon–hydrogen bond oxidation promoted by Cu(<scp>i</scp>) complexes. Dalton Transactions, 2020, 49, 14647-14655.	3.3	9
20	Gold Complexes with ADAP Ligands: Effect of Bulkiness in Catalytic Carbene Transfer Reactions (ADAP) Tj ETQq0 (0.0.rgBT /	Oyerlock 10
21	Pyrrole Functionalization by Copperâ€Catalyzed Nitrene Transfer Reactions. Israel Journal of Chemistry, 2020, 60, 485-489.	2.3	4
22	The Tp x M Core in C sp 3 –H Bond Functionalization Reactions: Comparing Carbene, Nitrene, and Oxo Insertion Processes (Tp x = Scorpionate Ligand; M = Cu, Ag). European Journal of Inorganic Chemistry, 2020, 2020, 869-869.	2.0	0
23	Intermolecular Allene Functionalization by Silver-Nitrene Catalysis. Journal of the American Chemical Society, 2020, 142, 13062-13071.	13.7	25
24	Copperâ€Catalyzed Selective Pyrrole Functionalization by Carbene Transfer Reaction. Advanced Synthesis and Catalysis, 2020, 362, 1998-2004.	4.3	11
25	Alkoxydiaminophosphine Ligands as Surrogates of NHCs in Copper Catalysis. Chemistry - A European Journal, 2020, 26, 10330-10335.	3.3	7
26	Methane functionalization in water with micellar catalysis. Chemical Communications, 2019, 55, 11243-11246.	4.1	11
27	Coinage metal complexes bearing fluorinated N-Heterocyclic carbene ligands. Journal of Organometallic Chemistry, 2019, 898, 120856.	1.8	10
28	Molybdenum and tungsten complexes with carbon dioxide and ethylene ligands. Chemical Science, 2019, 10, 8541-8546.	7.4	15
29	Ruthenium-Catalyzed Heck-Type Alkenylation of Alkyl Bromides. Journal of Organic Chemistry, 2019, 84, 8289-8296.	3.2	7
30	Group 11 tris(pyrazolyl)methane complexes: structural features and catalytic applications. Dalton Transactions, 2019, 48, 10772-10781.	3.3	15
31	Copperâ€Catalyzed Nâ^'F Bond Activation for Uniform Intramolecular Câ^'H Amination Yielding Pyrrolidines and Piperidines. Angewandte Chemie - International Edition, 2019, 58, 8912-8916.	13.8	71
32	Trispyrazolylborate coinage metals complexes: Structural features and catalytic transformations. Coordination Chemistry Reviews, 2019, 390, 171-189.	18.8	40
33	Eine Kupferâ€katalysierte Nâ€Fâ€Bindungsaktivierung für die einheitliche intramolekulare Câ€Hâ€Aminierung z Pyrrolidinen und Piperidinen. Angewandte Chemie, 2019, 131, 9004-9009.	^{'u} 2.0	13
34	<i>In My Element</i> : Copper. Chemistry - A European Journal, 2019, 25, 6650-6650.	3.3	0
35	Improving Catalyst Activity in Hydrocarbon Functionalization by Remote Pyrene–Graphene Stacking. Chemistry - A European Journal, 2019, 25, 9534-9539.	3.3	12
36	Gold-catalyzed ethylene cyclopropanation. Beilstein Journal of Organic Chemistry, 2019, 15, 67-71.	2.2	7

#	Article	IF	Citations
37	Favoring Alkane Primary Carbon–Hydrogen Bond Functionalization in Supercritical Carbon Dioxide as Reaction Medium. ACS Sustainable Chemistry and Engineering, 2019, 7, 7346-7352.	6.7	5
38	Trispyrazolylborate Ligands Supported on Vinyl Addition Polynorbornenes and Their Copper Derivatives as Recyclable Catalysts. Chemistry - A European Journal, 2019, 25, 556-563.	3.3	9
39	Alkenyl Boronates: Synthesis and Applications. Chemistry - an Asian Journal, 2019, 14, 329-343.	3.3	159
40	Frontispiece: Enantio―and Diastereoselective Cyclopropanation of 1â€Alkenylboronates: Synthesis of 1â€Borylâ€2,3â€Disubstituted Cyclopropanes. Angewandte Chemie - International Edition, 2018, 57, .	13.8	0
41	Enantio―and Diastereoselective Cyclopropanation of 1â€Alkenylboronates: Synthesis of 1â€Borylâ€2,3â€Disubstituted Cyclopropanes. Angewandte Chemie, 2018, 130, 2358-2362.	2.0	12
42	Discrete Cu(<scp>i</scp>) complexes for azide–alkyne annulations of small molecules inside mammalian cells. Chemical Science, 2018, 9, 1947-1952.	7.4	47
43	Copper(I)â€Arene Complexes with a Sterically Hindered Tris(pyrazolyI)borate Ligand. European Journal of Inorganic Chemistry, 2018, 2018, 2026-2030.	2.0	2
44	Mechanism of the Selective Fe-Catalyzed Arene Carbon–Hydrogen Bond Functionalization. ACS Catalysis, 2018, 8, 4313-4322.	11.2	32
45	Enantio―and Diastereoselective Cyclopropanation of 1â€Alkenylboronates: Synthesis of 1â€Borylâ€2,3â€Disubstituted Cyclopropanes. Angewandte Chemie - International Edition, 2018, 57, 2334-2338.	13.8	48
46	Titelbild: Measuring the Relative Reactivity of the Carbon–Hydrogen Bonds of Alkanes as Nucleophiles (Angew. Chem. 42/2018). Angewandte Chemie, 2018, 130, 13885-13885.	2.0	0
47	Frontispiz: Enantio―and Diastereoselective Cyclopropanation of 1â€Alkenylboronates: Synthesis of 1â€Borylâ€2,3â€Disubstituted Cyclopropanes. Angewandte Chemie, 2018, 130, .	2.0	O
48	Measuring the Relative Reactivity of the Carbon–Hydrogen Bonds of Alkanes as Nucleophiles. Angewandte Chemie, 2018, 130, 14044-14048.	2.0	12
49	Multigram Synthesis of Thallium Trispyrazolylborate Compounds. Synthesis, 2018, 50, 3333-3336.	2.3	2
50	Measuring the Relative Reactivity of the Carbon–Hydrogen Bonds of Alkanes as Nucleophiles. Angewandte Chemie - International Edition, 2018, 57, 13848-13852.	13.8	40
51	Catalytic Functionalization of C–H Bonds of Azulene by Carbene/Nitrene Incorporation. Journal of Organic Chemistry, 2018, 83, 11125-11132.	3.2	19
52	Functional-Group-Tolerant, Silver-Catalyzed N–N Bond Formation by Nitrene Transfer to Amines. Journal of the American Chemical Society, 2017, 139, 2216-2223.	13.7	62
53	The Elusive Palladiumâ€Diazo Adduct Captured: Synthesis, Isolation and Structural Characterization of [(ArNHCâ€PPh ₂)Pd(η ² â€N ₂ C(Ph)CO ₂ Et)]. Chemistry - A European Journal, 2017, 23, 7667-7671.	3.3	9
54	Water as the Reaction Medium for Intermolecular C–H Alkane Functionalization in Micellar Catalysis. ACS Catalysis, 2017, 7, 3707-3711.	11,2	34

#	Article	IF	CITATIONS
55	Dimensioning the Term Carbenoid. Chemistry - A European Journal, 2017, 23, 14389-14393.	3.3	46
56	Triazolylideneâ€Iridium Complexes with a Pendant Pyridyl Group for Cooperative Metal–Ligand Induced Catalytic Dehydrogenation of Amines. Chemistry - A European Journal, 2017, 23, 8901-8911.	3.3	20
57	Frontispiece: Catalytic Nitrene Transfer To Alkynes: A Novel and Versatile Route for the Synthesis of Sulfinamides and Isothiazoles. Angewandte Chemie - International Edition, 2017, 56, .	13.8	0
58	Frontispiz: Catalytic Nitrene Transfer To Alkynes: A Novel and Versatile Route for the Synthesis of Sulfinamides and Isothiazoles. Angewandte Chemie, 2017, 129, .	2.0	0
59	A competing, dual mechanism for catalytic direct benzene hydroxylation from combined experimental-DFT studies. Chemical Science, 2017, 8, 8373-8383.	7.4	30
60	Frontispiece: Dimensioning the Term Carbenoid. Chemistry - A European Journal, 2017, 23, .	3.3	0
61	Alkane Carbonâ€Hydrogen Bond Functionalization as a Tool Toward a Steric Parameter for Hydrotris(pyrazolyl)borate (Tp ^x) Ligands. Israel Journal of Chemistry, 2017, 57, 1047-1052.	2.3	2
62	Catalytic Nitrene Transfer To Alkynes: A Novel and Versatile Route for the Synthesis of Sulfinamides and Isothiazoles. Angewandte Chemie, 2017, 129, 13022-13027.	2.0	10
63	Catalytic Nitrene Transfer To Alkynes: A Novel and Versatile Route for the Synthesis of Sulfinamides and Isothiazoles. Angewandte Chemie - International Edition, 2017, 56, 12842-12847.	13.8	36
64	Mechanistic Studies on Gold-Catalyzed Direct Arene C–H Bond Functionalization by Carbene Insertion: The Coinage-Metal Effect. Organometallics, 2017, 36, 172-179.	2.3	52
65	Iron and Manganese Catalysts for the Selective Functionalization of Arene C(sp ²)â^'H Bonds by Carbene Insertion. Angewandte Chemie - International Edition, 2016, 55, 6530-6534.	13.8	77
66	Iron and Manganese Catalysts for the Selective Functionalization of Arene C(sp ²)â^'H Bonds by Carbene Insertion. Angewandte Chemie, 2016, 128, 6640-6644.	2.0	29
67	Homogeneous Metal-Based Catalysis in Supercritical Carbon Dioxide as Reaction Medium. ACS Catalysis, 2016, 6, 4265-4280.	11.2	48
68	Gold and diazo reagents: a fruitful tool for developing molecular complexity. Chemical Communications, 2016, 52, 7326-7335.	4.1	126
69	Synthesis and catalytic applications of 1,2,3-triazolylidene gold(<scp>i</scp>) complexes in silver-free oxazoline syntheses and C–H bond activation. Dalton Transactions, 2016, 45, 14591-14602.	3.3	48
70	Copper-induced ammonia N–H functionalization. Dalton Transactions, 2016, 45, 14628-14633.	3.3	12
71	Direct Synthesis of Hemiaminal Ethers <i>via</i> a Threeâ€Component Reaction of Aldehydes, Amines and Alcohols. Advanced Synthesis and Catalysis, 2015, 357, 2821-2826.	4.3	13
72	Functionalization of C _{<i>n</i>} H _{2<i>n</i>+2} Alkanes: Supercritical Carbon Dioxide Enhances the Reactivity towards Primary Carbonâ€"Hydrogen Bonds. ChemCatChem, 2015, 7, 3254-3260.	3.7	23

#	Article	IF	CITATIONS
73	Copper–Carbene Intermediates in the Copperâ€Catalyzed Functionalization of OH Bonds. Chemistry - A European Journal, 2015, 21, 9769-9775.	3.3	48
74	Evidencing an inner-sphere mechanism for NHC-Au(I)-catalyzed carbene-transfer reactions from ethyl diazoacetate. Beilstein Journal of Organic Chemistry, 2015, 11, 2254-2260.	2.2	5
75	A fully recyclable heterogenized Cu catalyst for the general carbene transfer reaction in batch and flow. Chemical Science, 2015, 6, 1510-1515.	7.4	46
76	Catalyst design in the alkane C–H bond functionalization of alkanes by carbene insertion with TpxM complexes (TpxÂ=Âhydrotrispyrazolylborate ligand; MÂ=ÂCu, Ag). Journal of Organometallic Chemistry, 2015, 793, 108-113.	1.8	30
77	Copper-catalysed azide–alkyne cycloadditions (CuAAC): an update. Organic and Biomolecular Chemistry, 2015, 13, 9528-9550.	2.8	436
78	Chiral, Sterically Demanding N-Heterocyclic Carbenes Fused into a Heterobiaryl Skeleton: Design, Synthesis, and Structural Analysis. Organometallics, 2015, 34, 1328-1338.	2.3	31
79	Discovering Copper for Methane C–H Bond Functionalization. ACS Catalysis, 2015, 5, 3726-3730.	11.2	63
80	Catalytic functionalization of low reactive C(sp ³)â€"H and C(sp ²)â€"H bonds of alkanes and arenes by carbene transfer from diazo compounds. Dalton Transactions, 2015, 44, 20295-20307.	3. 3	104
81	A computational view on the reactions of hydrocarbons with coinage metal complexes. Journal of Organometallic Chemistry, 2015, 784, 2-12.	1.8	39
82	Catalytic Functionalization of Indoles by Copperâ€Mediated Carbene Transfer. ChemCatChem, 2014, 6, 2047-2052.	3.7	74
83	Reaction of Alkynes and Azides: Not Triazoles Through Copper–Acetylides but Oxazoles Through Copper–Nitrene Intermediates. Chemistry - A European Journal, 2014, 20, 3463-3474.	3.3	45
84	1,2,3-Triazoles from carbonyl azides and alkynes: filling the gap. Chemical Communications, 2014, 50, 8978.	4.1	30
85	Catalytic Copper-Mediated Ring Opening and Functionalization of Benzoxazoles. ACS Catalysis, 2014, 4, 4215-4222.	11.2	16
86	Syntheses of a Novel Fluorinated Trisphosphinoborate Ligand and Its Copper and Silver Complexes. Catalytic Activity toward Nitrene Transfer Reactions. Inorganic Chemistry, 2014, 53, 3991-3999.	4.0	26
87	Catalytic Functionalization of Methane and Light Alkanes in Supercritical Carbon Dioxide. Chemistry - A European Journal, 2014, 20, 11013-11018.	3.3	25
88	Silverâ€Catalyzed Functionalization of Esters by Carbene Transfer: The Role of Ylide Zwitterionic Intermediates. ChemCatChem, 2014, 6, 2206-2210.	3.7	22
89	Chemo-, Regio-, and Stereoselective Silver-Catalyzed Aziridination of Dienes: Scope, Mechanistic Studies, and Ring-Opening Reactions. Journal of the American Chemical Society, 2014, 136, 5342-5350.	13.7	89
90	Synthesis, Structural Characterization, Reactivity, and Catalytic Properties of Copper(I) Complexes with a Series of Tetradentate Tripodal Tris(pyrazolylmethyl)amine Ligands. Inorganic Chemistry, 2014, 53, 4192-4201.	4.0	32

#	Article	IF	Citations
91	Catalytic cross-coupling of diazo compounds with coinage metal-based catalysts: an experimental and theoretical study. Dalton Transactions, 2013, 42, 4132.	3.3	57
92	Methane as raw material in synthetic chemistry: the final frontier. Chemical Society Reviews, 2013, 42, 8809.	38.1	262
93	Supercritical Carbon Dioxide: A Promoter of Carbon–Halogen Bond Heterolysis. Angewandte Chemie - International Edition, 2013, 52, 13298-13301.	13.8	11
94	A General Mechanism for the Copper- and Silver-Catalyzed Olefin Aziridination Reactions: Concomitant Involvement of the Singlet and Triplet Pathways. Journal of the American Chemical Society, 2013, 135, 1338-1348.	13.7	160
95	Functionalization of Nonâ€activated CH Bonds of Alkanes: An Effective and Recyclable Catalytic System Based on Fluorinated Silver Catalysts and Solvents. Chemistry - A European Journal, 2013, 19, 1327-1334.	3.3	35
96	Introducing Copper as Catalyst for Oxidative Alkane Dehydrogenation. Journal of the American Chemical Society, 2013, 135, 3887-3896.	13.7	89
97	Catalytic Câ€"H amination of alkanes with sulfonimidamides: silver(I)-scorpionates vs. dirhodium(II) carboxylates. Tetrahedron, 2013, 69, 4488-4492.	1.9	43
98	Silver-catalyzed silicon–hydrogen bond functionalization by carbene insertion. Dalton Transactions, 2013, 42, 1191-1195.	3.3	25
99	An Effective Dual Copper―and Sulfideâ€Catalytic System for the Epoxidation of Aldehydes with Phenyldiazomethane. Advanced Synthesis and Catalysis, 2013, 355, 2942-2951.	4.3	12
100	Introduction to the <i>Ennobling a Base Metal: Presenting Copper in Organometallic Chemistry</i> Issue. Organometallics, 2012, 31, 7631-7633.	2.3	19
101	Mild Catalytic Functionalization of Styrene–Butadiene Rubbers. Macromolecules, 2012, 45, 9267-9274.	4.8	14
102	Hydrotris(3-mesitylpyrazolyl)borato-copper(i) alkyne complexes: synthesis, structural characterization and rationalization of their activities as alkyne cyclopropenation catalysts. Dalton Transactions, 2012, 41, 5319.	3.3	22
103	[(PhBP ₃)Cu(PPh ₃)] as a Surrogate of Tp ^x CuL in Homogeneous Catalysis (PhBP ₃ = PhB(CH ₂ PPh ₂) ₃ ; Tp ^x =) Tj E	ETQq1 1 0.	.7 8\$ 314 rg <mark>8</mark>
104	Copper-Catalyzed Nitrene Transfer as a Tool for the Synthesis of N-Substituted 1,2-Dihydro- and 1,2,3,4-Tetrahydropyridines. Organometallics, 2012, 31, 7839-7843.	2.3	20
105	Intramolecular cycloaddition of azomethine ylides, from imines of O-acylsalicylic aldehyde and ethyl diazoacetate, to ester carbonyl $\hat{a} \in \hat{c}$ experimental and DFT computational study. Organic and Biomolecular Chemistry, 2012, 10, 5582.	2.8	17
106	Copper(I) Complexes with Trispyrazolylmethane Ligands: Synthesis, Characterization, and Catalytic Activity in Cross-Coupling Reactions. Inorganic Chemistry, 2012, 51, 8298-8306.	4.0	26
107	Cu(i)-catalyzed atom transfer radical cyclization of trichloroacetamides tethered to electron-deficient, -neutral, and -rich alkenes: synthesis of polyfunctionalized 2-azabicyclo[3.3.1]nonanes. Chemical Communications, 2012, 48, 8799.	4.1	31
108	Catalytic Hydrocarbon Functionalization with Gold Complexes Containing Nâ€Heterocyclic Carbene Ligands with Pendant Donor Groups. European Journal of Inorganic Chemistry, 2012, 2012, 1380-1386.	2.0	32

#	Article	IF	CITATIONS
109	Polynuclear Copper(I) Complexes with Chelating Bis―and Trisâ€∢i>N∢/i>â€Heterocyclic Carbene Ligands: Catalytic Activity in Nitrene and Carbene Transfer Reactions. European Journal of Organic Chemistry, 2012, 2012, 1367-1372.	2.4	49
110	Direct, copper-catalyzed oxidation of aromatic C–H bonds with hydrogen peroxide under acid-free conditions. Chemical Communications, 2011, 47, 8154.	4.1	68
111	Mechanistic and Computational Studies of the Atom Transfer Radical Addition of CCl ₄ to Styrene Catalyzed by Copper Homoscorpionate Complexes. Inorganic Chemistry, 2011, 50, 2458-2467.	4.0	36
112	Exclusive Aromatic vs Aliphatic C–H Bond Functionalization by Carbene Insertion with Gold-Based Catalysts. Organometallics, 2011, 30, 2855-2860.	2.3	115
113	Regioselective Formation of 2,5-Disubstituted Oxazoles Via Copper(I)-Catalyzed Cycloaddition of Acyl Azides and 1-Alkynes. Journal of the American Chemical Society, 2011, 133, 191-193.	13.7	146
114	Gold-catalyzed naphthalene functionalization. Beilstein Journal of Organic Chemistry, 2011, 7, 653-657.	2.2	37
115	Mechanism of Side Reactions in Alkane Cĩ£¿H Bond Functionalization by Diazo Compounds Catalyzed by Ag and Cu Homoscorpionate Complexes—A DFT Study. ChemCatChem, 2011, 3, 1646-1652.	3.7	47
116	Intermetallic coinage metal-catalyzed functionalization of alkanes with ethyl diazoacetate: Gold as a ligand. Inorganica Chimica Acta, 2011, 369, 146-149.	2.4	14
117	Atom Transfer Radical Reactions as a Tool for Olefin Functionalization – On the Way to Practical Applications. European Journal of Inorganic Chemistry, 2011, 2011, 3155-3164.	2.0	113
118	Silver-Catalyzed C-C Bond Formation Between Methane and Ethyl Diazoacetate in Supercritical CO ₂ . Science, 2011, 332, 835-838.	12.6	228
119	Efficient Silverâ€Catalyzed Regio―and Stereospecific Aziridination of Dienes. Angewandte Chemie - International Edition, 2010, 49, 7092-7095.	13.8	86
120	Catalytic cyclopropanation of polybutadienes. Journal of Polymer Science Part A, 2010, 48, 4439-4444.	2.3	17
121	Copper(I)â^'Olefin Complexes: The Effect of the Trispyrazolylborate Ancillary Ligand in Structure and Reactivity. Organometallics, 2010, 29, 3481-3489.	2.3	32
122	An Efficient, Selective, and Reducing Agent-Free Copper Catalyst for the Atom-Transfer Radical Addition of Halo Compounds to Activated Olefins. Inorganic Chemistry, 2010, 49, 642-645.	4.0	36
123	Efficient Atom-Transfer Radical Polymerization of Methacrylates Catalyzed by Neutral Copper Complexes. Macromolecules, 2010, 43, 3221-3227.	4.8	13
124	Copper(i) complexes as catalysts for the synthesis of N-sulfonyl-1,2,3-triazoles from N-sulfonylazides and alkynes. Organic and Biomolecular Chemistry, 2010, 8, 536-538.	2.8	54
125	Selective Synthesis of N-Substituted 1,2-Dihydropyridines from Furans by Copper-Induced Concurrent Tandem Catalysis. Journal of the American Chemical Society, 2010, 132, 4600-4607.	13.7	66
126	Metalâ€Catalyzed Olefin Cyclopropanation with Ethyl Diazoacetate: Control of the Diastereoselectivity. European Journal of Inorganic Chemistry, 2009, 2009, 1137-1144.	2.0	82

#	Article	IF	CITATIONS
127	Hydrotrispyrazolylborate-copper complexes as catalysts for the styrene cyclopropanation reaction with ethyl diazoacetate under homogeneous and heterogeneous conditions. Inorganica Chimica Acta, 2009, 362, 4599-4602.	2.4	7
128	Gold-catalyzed olefin cyclopropanation. Tetrahedron, 2009, 65, 1790-1793.	1.9	108
129	Rediscovering copper-based catalysts for intramolecular carbon–hydrogen bond functionalization by carbene insertion. Organic and Biomolecular Chemistry, 2009, 7, 4777.	2.8	24
130	The Mechanism of the Catalytic Functionalization of Haloalkanes by Carbene Insertion: An Experimental and Theoretical Study. Organometallics, 2009, 28, 5968-5981.	2.3	49
131	Dinuclear Copper(I) Complexes as Precatalysts in Ullmann and Goldberg Coupling Reactions. Organometallics, 2009, 28, 3815-3821.	2.3	50
132	Asymmetric \hat{l}^2 -Boration of $\hat{l}\pm,\hat{l}^2$ -Unsaturated Esters with Chiral (NHC)Cu Catalysts. Organometallics, 2009, 28, 659-662.	2.3	201
133	Highly active gold-based catalyst for the reaction of benzaldehyde with ethyl diazoacetate. Chemical Communications, 2009, , 5153.	4.1	31
134	Nitrene transfer reactions catalysed by copper(I) complexes in ionic liquid using chloramine-T. Dalton Transactions, 2009, , 730-734.	3.3	18
135	Copperâ€Catalyzed Synthesis of 1,2â€Disubstituted Cyclopentanes from 1,6â€Dienes by Ringâ€Closing Kharasch Addition of Carbon Tetrachloride. Advanced Synthesis and Catalysis, 2008, 350, 2365-2372.	4.3	55
136	Coinage Metal Catalyzed Câ^'H Bond Functionalization of Hydrocarbons. Chemical Reviews, 2008, 108, 3379-3394.	47.7	705
137	Gold-promoted styrene polymerization. Chemical Communications, 2008, , 759-761.	4.1	48
138	A New Perfluorinated F ₂₁ -Tp Scorpionate Ligand: Enhanced Alkane Functionalization by Carbene Insertion with $(F21-Tp)M$ Catalysts $(M = Cu, Ag)$. Organometallics, 2008, 27, 4779-4787.	2.3	64
139	Easy Alkane Catalytic Functionalization. Organometallics, 2008, 27, 4126-4130.	2.3	90
140	Effects of the Substituents in the Tp ^x Cu Activation of Dioxygen:  An Experimental Study. Inorganic Chemistry, 2007, 46, 7428-7435.	4.0	31
141	Catalytic Carbonâ^'Hydrogen Bond Functionalization in an Ionic Liquid Medium. Organometallics, 2007, 26, 6661-6668.	2.3	26
142	Synthesis, Characterization, and Reactivity of Ruthenium Diene/Diamine Complexes Including Catalytic Hydrogenation of Ketones. Inorganic Chemistry, 2007, 46, 9405-9414.	4.0	14
143	Unusual Polybrominated Polypyrazolylborates and Their Copper(I) Complexes:  Synthesis, Characterization, and Catalytic Activity. Inorganic Chemistry, 2007, 46, 780-787.	4.0	32
144	Copperâ^'Homoscorpionate Complexes as Active Catalysts for Atom Transfer Radical Addition to Olefins. Inorganic Chemistry, 2007, 46, 7725-7730.	4.0	52

#	Article	lF	CITATIONS
145	A Valuable, Inexpensive Cul/N-Heterocyclic Carbene Catalyst for the Selective Diboration of Styrene. Chemistry - A European Journal, 2007, 13, 2614-2621.	3.3	156
146	The Effect of Catalyst Loading in Copper-Catalyzed Cyclohexane Functionalization by Carbene Insertion. European Journal of Inorganic Chemistry, 2007, 2007, 2848-2852.	2.0	18
147	Mechanism of Alkane Câ^'H Bond Activation by Copper and Silver Homoscorpionate Complexes. Organometallics, 2006, 25, 5292-5300.	2.3	84
148	Facile Amine Formation by Intermolecular Catalytic Amidation of Carbonâ^'Hydrogen Bonds. Journal of the American Chemical Society, 2006, 128, 11784-11791.	13.7	267
149	The carbene insertion methodology for the catalytic functionalization of unreactive hydrocarbons: No classical Câ \in "H activation, but efficient Câ \in "H functionalization. Dalton Transactions, 2006, , 5559-5566.	3.3	66
150	A non-fluorous copper catalyst for the styrene cyclopropanation reaction in a fluorous medium. Chemical Communications, 2006, , 1000.	4.1	13
151	Cu-, Ag-, and Au-NHC Complexes in Catalysis. , 2006, , 257-274.		5
152	Alkane Carbonâ^'Hydrogen Bond Functionalization with (NHC)MCl Precatalysts (M = Cu, Au; NHC =) Tj ETQq0 0 0	rgBT/Ove	rlock 10 Tf 164
153	Very Efficient, Reusable Copper Catalyst for Carbene Transfer Reactions under Biphasic Conditions Using Ionic Liquids. Organic Letters, 2006, 8, 557-560.	4.6	43
154	Synthesis, isolation and characterization of cationic gold(i) N-heterocyclic carbene (NHC) complexes. Chemical Communications, 2006, , 2045-2047.	4.1	109
155	Copper, silver and gold-based catalysts for carbene addition or insertion reactions. Journal of Organometallic Chemistry, 2005, 690, 5441-5450.	1.8	117
156	A Gold Catalyst for Carbene-Transfer Reactions from Ethyl Diazoacetate. Angewandte Chemie - International Edition, 2005, 44, 5284-5288.	13.8	422
157	Copper-Catalyzed Addition of Ethyl Diazoacetate to Furans: An Alternative to Dirhodium(II) Tetraacetate ChemInform, 2005, 36, no.	0.0	O
158	Novel carbon dioxide and carbonyl carbonate complexes of molybdenum. The X-ray structures of trans-[Mo(CO2)2{HN(CH2CH2PMe2)2}(PMe3)] and [Mo3(\hat{l} 42-CO3)(\hat{l} 42-O)2(O)2(CO)2(H2O)(PMe3)6]·H2O. Journal of Chemistry, 2005, 29, 109-115.	Nde8w	25
159	Functionalization of Primary Carbonâ^'Hydrogen Bonds of Alkanes by Carbene Insertion with a Silver-Based Catalyst. Organometallics, 2005, 24, 1528-1532.	2.3	102
160	Controlled, Copper-Catalyzed Functionalization of Polyolefins. Macromolecules, 2005, 38, 4966-4969.	4.8	55
161	Copper-Catalyzed Addition of Ethyl Diazoacetate to Furans:  An Alternative to Dirhodium(II) Tetraacetate. Journal of Organic Chemistry, 2005, 70, 6101-6104.	3.2	34
162	Copper-Homoscorpionate Complexes as Very Active Catalysts for the Olefin Aziridination Reaction ChemInform, 2004, 35, no.	0.0	0

#	Article	IF	Citations
163	Alkane Dehydrogenation by Sequential, Double Câ^'H Bond Activation by TpBr3lr(C2H4)2(TpBr3=) Tj ETQq1 1 ().784314 rg	gBT_{5}Overlock
164	Complete Control of the Chemoselectivity in Catalytic Carbene Transfer Reactions from Ethyl Diazoacetate:Â AnN-Heterocyclic Carbeneâ^'Cu System That Suppresses Diazo Coupling. Journal of the American Chemical Society, 2004, 126, 10846-10847.	13.7	115
165	Reaction of Ethyl Diazoacetate with Alkyl-Aromatic Substrates:  Influence of the TpxCu Catalyst in the Addition versus Insertion Chemoselectivity (Tpx = Homoscorpionate). Organometallics, 2004, 23, 293-295.	2.3	57
166	Copper-Homoscorpionate Complexes as Very Active Catalysts for the Olefin Aziridination Reaction. Organometallics, 2004, 23, 253-256.	2.3	94
167	Catalytic Insertion of Diazo Compounds into Nâ€"H Bonds: The Copper Alternative ChemInform, 2003, 34, no.	0.0	O
168	Copper-Catalyzed Carbene Insertion into Oâ^'H Bonds:  High Selective Conversion of Alcohols into Ethers. Organometallics, 2003, 22, 2914-2918.	2.3	40
169	Functionalization of Carbonâ "Hydrogen Bonds of Hydrocarbons and Ethers via Carbene Insertion with Copper(I) a "Homoscorpionate Catalysts. Organometallics, 2003, 22, 4145-4150.	2.3	69
170	Highly Regioselective Functionalization of Aliphatic Carbonâ^'Hydrogen Bonds with a Perbromohomoscorpionate Copper(I) Catalyst. Journal of the American Chemical Society, 2003, 125, 1446-1447.	13.7	122
171	Cyclohexane and Benzene Amination by Catalytic Nitrene Insertion into Câ^'H Bonds with the Copper-Homoscorpionate Catalyst TpBr3Cu(NCMe). Journal of the American Chemical Society, 2003, 125, 12078-12079.	13.7	160
172	Intermolecular Copper-Catalyzed Carbonâ^'Hydrogen Bond Activation via Carbene Insertion. Journal of the American Chemical Society, 2002, 124, 896-897.	13.7	139
173	Copper(I)â^'Homoscorpionate Catalysts for the Preferential, Kinetically Controlled Cis Cyclopropanation of α-Olefins with Ethyl Diazoacetate. Journal of the American Chemical Society, 2002, 124, 978-983.	13.7	98
174	Catalytic insertion of diazo compounds into N–H bonds: the copper alternative. Chemical Communications, 2002, , 2998-2999.	4.1	86
175	Intramolecular dealkylation of chelating diamines with Ru(ii) complexes. Chemical Communications, 2002, , 1848-1849.	4.1	12
176	Cï£;C Bond-Forming Reactions of IrIII-Alkenyls and Nitriles or Aldehydes: Generation of Reactive Hydride- and Alkyl-Alkylidene Compounds and Observation of a Reversible 1,2-H Shift in Stable Hydride–IrIII Alkylidene Complexes. Chemistry - A European Journal, 2002, 8, 5132-5146.	3.3	43
177	Synthesis, Characterization, and Reactivity of [((iPr)2P(CH2)3P(iPr)2)(PCy3)PdH][OR]. Organometallics, 2001, 20, 337-345.	2.3	48
178	A family of highly active copper(i) $\hat{a} \in ``homoscorpionate catalysts for the alkyne cyclopropenation reaction. Chemical Communications, 2001, , 1804-1805.$	4.1	63
179	Unprecedented Highlycis-Diastereoselective Olefin Cyclopropanation Using Copper Homoscorpionate Catalysts. Journal of the American Chemical Society, 2001, 123, 3167-3168.	13.7	68
180	The use of polypyrazolylborate copper(I) complexes as catalysts in the conversion of olefins into cyclopropanes, aziridines and epoxides and alkynes into cyclopropenes. Journal of Organometallic Chemistry, 2001, 617-618, 110-118.	1.8	45

#	Article	IF	CITATIONS
181	Polypyrazolylborate copper(i) complexes as catalysts of the homogeneous and heterogeneous styrene epoxidation reaction. Chemical Communications, 2000, , 1853-1854.	4.1	32
182	Substitution and Hydrogenation Reactions on Rhodium(I)â^'Ethylene Complexes of the Hydrotris(pyrazolyl)borate Ligands Tpâ€~ (Tpâ€~ = Tp, TpMe2)â€. Inorganic Chemistry, 2000, 39, 180-188.	4.0	46
183	From Homogeneous to Heterogeneous Catalysis:  Novel Anchoring of Polypyrazolylborate Copper(I) Complexes on Silica Gel through Classical and Nonclassical Hydrogen Bonds. Use as Catalysts of the Olefin Cyclopropanation Reaction. Organometallics, 2000, 19, 285-289.	2.3	47
184	Kinetics of the BpCu-Catalyzed Carbene Transfer Reaction (Bp = Dihydridobis(1-pyrazolyl)borate). Is a 14-Electron Species the Real Catalyst for the General Copper-Mediated Olefin Cyclopropanation?. Organometallics, 1999, 18, 2601-2609.	2.3	65
185	Câ^'H Activation Reactions on Rh(I)â^'Ethylene Complexes of the Hydrotris(3,5-dimethylpyrazolyl)borate Ligand, TpMe2. Organometallics, 1999, 18, 4304-4310.	2.3	32
186	Synthesis and characterisation of rhodium(I) complexes containing the dihydrobis(pyrazolyl)borate		

#	Article	IF	Citations
199	A copper(I) catalyst for carbene and nitrene transfer to form cyclopropanes, cyclopropenes, and aziridines. Organometallics, 1993, 12, 261-262.	2.3	148
200	Bis(ethylene) complexes of molybdenum and tungsten and their reactivity toward carbon dioxide. New examples of acrylate formation by coupling of ethylene and carbon dioxide. Organometallics, 1993, 12, 4443-4451.	2.3	72
201	Simple low-valent amido, imido and nitrido complexes of tungsten. Journal of the American Chemical Society, 1992, 114, 7928-7929.	13.7	24
202	Ethylene dimerization: an alternative route involving vinyl hydride intermediates. Journal of the Chemical Society Chemical Communications, 1992, , 8-9.	2.0	22
203	Double carbon-hydrogen activation at the .alphacarbon of cyclic ethers by Tp*Ir(C2H4)2. Journal of the American Chemical Society, 1992, 114, 7288-7290.	13.7	77
204	Rotational isomerism and fluxional behavior of bis(carbon dioxide) adducts of molybdenum. Journal of the American Chemical Society, 1991, 113, 9210-9218.	13.7	28
205	Classical and nonclassical polyhydride ruthenium(II) complexes stabilized by the tetraphosphine P(CH2CH2PPh2)3. Inorganic Chemistry, 1991, 30, 279-287.	4.0	101
206	Formation of carbonyl-carbonate complexes of molybdenum by reductive disproportionation of carbon dioxide. X-ray structure of Mo4(.mu.4-CO3)(CO)2(O)2(.mu.2-O)2(.mu.2-OH)4(PMe3)6. Inorganic Chemistry, 1991, 30, 1493-1499.	4.0	37
207	Rotational isomerism in bis(carbon dioxide) complexes of molybdenum generated by conrotatory motion of the CO2 ligands. Organometallics, 1990, 9, 1337-1339.	2.3	17
208	Synthesis and properties of nitrosyl complexes of molybdenum and tungsten containing halide and trimethylphosphine ligands. Crystal and molecular structures of MoCl3(NO)(PMe3)3 and MoCl(NO)(S2CPMe3-S,S',C)(PMe3)2. Inorganic Chemistry, 1989, 28, 2120-2127.	4.0	35