List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5697673/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coinage Metal Catalyzed Câ^'H Bond Functionalization of Hydrocarbons. Chemical Reviews, 2008, 108, 3379-3394.	47.7	705
2	Copper-catalysed azide–alkyne cycloadditions (CuAAC): an update. Organic and Biomolecular Chemistry, 2015, 13, 9528-9550.	2.8	436
3	A Gold Catalyst for Carbene-Transfer Reactions from Ethyl Diazoacetate. Angewandte Chemie - International Edition, 2005, 44, 5284-5288.	13.8	422
4	Facile Amine Formation by Intermolecular Catalytic Amidation of Carbonâ^'Hydrogen Bonds. Journal of the American Chemical Society, 2006, 128, 11784-11791.	13.7	267
5	Methane as raw material in synthetic chemistry: the final frontier. Chemical Society Reviews, 2013, 42, 8809.	38.1	262
6	Silver-Catalyzed C-C Bond Formation Between Methane and Ethyl Diazoacetate in Supercritical CO ₂ . Science, 2011, 332, 835-838.	12.6	228
7	Asymmetric β-Boration of α,β-Unsaturated Esters with Chiral (NHC)Cu Catalysts. Organometallics, 2009, 28, 659-662.	2.3	201

$\frac{1}{2}$ Alkane Carbonâ[^]Hydrogen Bond Functionalization with (NHC)MCl Precatalysts (M = Cu, Au; NHC =) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $\frac{1}{2}$

9	Cyclohexane and Benzene Amination by Catalytic Nitrene Insertion into Câ^H Bonds with the Copper-Homoscorpionate Catalyst TpBr3Cu(NCMe). Journal of the American Chemical Society, 2003, 125, 12078-12079.	13.7	160
10	A General Mechanism for the Copper- and Silver-Catalyzed Olefin Aziridination Reactions: Concomitant Involvement of the Singlet and Triplet Pathways. Journal of the American Chemical Society, 2013, 135, 1338-1348.	13.7	160
11	Alkenyl Boronates: Synthesis and Applications. Chemistry - an Asian Journal, 2019, 14, 329-343.	3.3	159
12	A Valuable, Inexpensive Cul/N-Heterocyclic Carbene Catalyst for the Selective Diboration of Styrene. Chemistry - A European Journal, 2007, 13, 2614-2621.	3.3	156
13	A copper(I) catalyst for carbene and nitrene transfer to form cyclopropanes, cyclopropenes, and aziridines. Organometallics, 1993, 12, 261-262.	2.3	148
14	Regioselective Formation of 2,5-Disubstituted Oxazoles Via Copper(I)-Catalyzed Cycloaddition of Acyl Azides and 1-Alkynes. Journal of the American Chemical Society, 2011, 133, 191-193.	13.7	146
15	Substituent Effects on the Reaction Rates of Copper-Catalyzed Cyclopropanation and Aziridination ofpara-Substituted Styrenesâ€. Organometallics, 1997, 16, 4399-4402.	2.3	141
16	Intermolecular Copper-Catalyzed Carbonâ^'Hydrogen Bond Activation via Carbene Insertion. Journal of the American Chemical Society, 2002, 124, 896-897.	13.7	139
17	Gold and diazo reagents: a fruitful tool for developing molecular complexity. Chemical Communications, 2016, 52, 7326-7335.	4.1	126
18	Highly Regioselective Functionalization of Aliphatic Carbonâ^'Hydrogen Bonds with a Perbromohomoscorpionate Copper(I) Catalyst. Journal of the American Chemical Society, 2003, 125, 1446-1447.	13.7	122

#	Article	IF	CITATIONS
19	Copper, silver and gold-based catalysts for carbene addition or insertion reactions. Journal of Organometallic Chemistry, 2005, 690, 5441-5450.	1.8	117
20	Complete Control of the Chemoselectivity in Catalytic Carbene Transfer Reactions from Ethyl Diazoacetate:Â AnN-Heterocyclic Carbeneâ^'Cu System That Suppresses Diazo Coupling. Journal of the American Chemical Society, 2004, 126, 10846-10847.	13.7	115
21	Exclusive Aromatic vs Aliphatic C–H Bond Functionalization by Carbene Insertion with Gold-Based Catalysts. Organometallics, 2011, 30, 2855-2860.	2.3	115
22	Atom Transfer Radical Reactions as a Tool for Olefin Functionalization – On the Way to Practical Applications. European Journal of Inorganic Chemistry, 2011, 2011, 3155-3164.	2.0	113
23	Synthesis, isolation and characterization of cationic gold(i) N-heterocyclic carbene (NHC) complexes. Chemical Communications, 2006, , 2045-2047.	4.1	109
24	Gold-catalyzed olefin cyclopropanation. Tetrahedron, 2009, 65, 1790-1793.	1.9	108
25	Câ^'H Bond Activation of Benzene and Cyclic Ethers by TpIrIII Species. Chemistry - A European Journal, 1998, 4, 2225-2236.	3.3	104
26	Catalytic functionalization of low reactive C(sp ³)–H and C(sp ²)–H bonds of alkanes and arenes by carbene transfer from diazo compounds. Dalton Transactions, 2015, 44, 20295-20307.	3.3	104
27	Formation of Hydrido–î· ³ â€Allyl Complexes of Ir ^{III} by Sequential Olefinic CH Bond Activation and CC Coupling of Alkenyl and Olefin Ligands. Chemistry - A European Journal, 1997, 3, 860-873.	3.3	102
28	Functionalization of Primary Carbonâ^'Hydrogen Bonds of Alkanes by Carbene Insertion with a Silver-Based Catalyst. Organometallics, 2005, 24, 1528-1532.	2.3	102
29	Classical and nonclassical polyhydride ruthenium(II) complexes stabilized by the tetraphosphine P(CH2CH2PPh2)3. Inorganic Chemistry, 1991, 30, 279-287.	4.0	101
30	Copper(I)â^'Homoscorpionate Catalysts for the Preferential, Kinetically Controlled Cis Cyclopropanation of α-Olefins with Ethyl Diazoacetate. Journal of the American Chemical Society, 2002, 124, 978-983.	13.7	98
31	Copper-Homoscorpionate Complexes as Very Active Catalysts for the Olefin Aziridination Reaction. Organometallics, 2004, 23, 253-256.	2.3	94
32	Easy Alkane Catalytic Functionalization. Organometallics, 2008, 27, 4126-4130.	2.3	90
33	Introducing Copper as Catalyst for Oxidative Alkane Dehydrogenation. Journal of the American Chemical Society, 2013, 135, 3887-3896.	13.7	89
34	Chemo-, Regio-, and Stereoselective Silver-Catalyzed Aziridination of Dienes: Scope, Mechanistic Studies, and Ring-Opening Reactions. Journal of the American Chemical Society, 2014, 136, 5342-5350.	13.7	89
35	Catalytic insertion of diazo compounds into N–H bonds: the copper alternative. Chemical Communications, 2002, , 2998-2999.	4.1	86
36	Efficient Silverâ€Catalyzed Regio―and Stereospecific Aziridination of Dienes. Angewandte Chemie - International Edition, 2010, 49, 7092-7095.	13.8	86

PEDRO J PEREZ

#	Article	IF	CITATIONS
37	Mechanism of Alkane Câ^'H Bond Activation by Copper and Silver Homoscorpionate Complexes. Organometallics, 2006, 25, 5292-5300.	2.3	84
38	Metal atalyzed Olefin Cyclopropanation with Ethyl Diazoacetate: Control of the Diastereoselectivity. European Journal of Inorganic Chemistry, 2009, 2009, 1137-1144.	2.0	82
39	Double carbon-hydrogen activation at the .alphacarbon of cyclic ethers by Tp*Ir(C2H4)2. Journal of the American Chemical Society, 1992, 114, 7288-7290.	13.7	77
40	Iron and Manganese Catalysts for the Selective Functionalization of Arene C(sp ²)â~H Bonds by Carbene Insertion. Angewandte Chemie - International Edition, 2016, 55, 6530-6534.	13.8	77
41	Catalytic Functionalization of Indoles by Copperâ€Mediated Carbene Transfer. ChemCatChem, 2014, 6, 2047-2052.	3.7	74
42	Bis(ethylene) complexes of molybdenum and tungsten and their reactivity toward carbon dioxide. New examples of acrylate formation by coupling of ethylene and carbon dioxide. Organometallics, 1993, 12, 4443-4451.	2.3	72
43	Copperâ€Catalyzed Nâ^'F Bond Activation for Uniform Intramolecular Câ^'H Amination Yielding Pyrrolidines and Piperidines. Angewandte Chemie - International Edition, 2019, 58, 8912-8916.	13.8	71
44	Functionalization of Carbonâ^'Hydrogen Bonds of Hydrocarbons and Ethers via Carbene Insertion with Copper(I)â^'Homoscorpionate Catalysts. Organometallics, 2003, 22, 4145-4150.	2.3	69
45	Unprecedented Highlycis-Diastereoselective Olefin Cyclopropanation Using Copper Homoscorpionate Catalysts. Journal of the American Chemical Society, 2001, 123, 3167-3168.	13.7	68
46	Direct, copper-catalyzed oxidation of aromatic C–H bonds with hydrogen peroxide under acid-free conditions. Chemical Communications, 2011, 47, 8154.	4.1	68
47	The carbene insertion methodology for the catalytic functionalization of unreactive hydrocarbons: No classical C–H activation, but efficient C–H functionalization. Dalton Transactions, 2006, , 5559-5566.	3.3	66
48	Selective Synthesis of N-Substituted 1,2-Dihydropyridines from Furans by Copper-Induced Concurrent Tandem Catalysis. Journal of the American Chemical Society, 2010, 132, 4600-4607.	13.7	66
49	Kinetics of the BpCu-Catalyzed Carbene Transfer Reaction (Bp = Dihydridobis(1-pyrazolyl)borate). Is a 14-Electron Species the Real Catalyst for the General Copper-Mediated Olefin Cyclopropanation?. Organometallics, 1999, 18, 2601-2609.	2.3	65
50	A New Perfluorinated F ₂₁ -Tp Scorpionate Ligand: Enhanced Alkane Functionalization by Carbene Insertion with (F ₂₁ -Tp)M Catalysts (M = Cu, Ag). Organometallics, 2008, 27, 4779-4787.	2.3	64
51	A family of highly active copper(i)–homoscorpionate catalysts for the alkyne cyclopropenation reaction. Chemical Communications, 2001, , 1804-1805.	4.1	63
52	Discovering Copper for Methane C–H Bond Functionalization. ACS Catalysis, 2015, 5, 3726-3730.	11.2	63
53	Functional-Group-Tolerant, Silver-Catalyzed N–N Bond Formation by Nitrene Transfer to Amines. Journal of the American Chemical Society, 2017, 139, 2216-2223.	13.7	62
54	BpCu-Catalyzed Cyclopropanation of Olefins:Â A Simple System That Operates under Homogeneous and Heterogeneous Conditions (Bp = Dihydridobis(pyrazolyl)borate)â€. Organometallics, 1998, 17, 3051-3057.	2.3	60

#	Article	IF	CITATIONS
55	Reaction of Ethyl Diazoacetate with Alkyl-Aromatic Substrates:  Influence of the TpxCu Catalyst in the Addition versus Insertion Chemoselectivity (Tpx = Homoscorpionate). Organometallics, 2004, 23, 293-295.	2.3	57
56	Catalytic cross-coupling of diazo compounds with coinage metal-based catalysts: an experimental and theoretical study. Dalton Transactions, 2013, 42, 4132.	3.3	57
57	Synthesis and Reactivity of Low-Valent Amido, Imido, Azavinylidene, and Nitrido Complexes of Tungsten. Organometallics, 1994, 13, 1851-1864.	2.3	56
58	Controlled, Copper-Catalyzed Functionalization of Polyolefins. Macromolecules, 2005, 38, 4966-4969.	4.8	55
59	Copperâ€Catalyzed Synthesis of 1,2â€Disubstituted Cyclopentanes from 1,6â€Dienes by Ringâ€Closing Kharasch Addition of Carbon Tetrachloride. Advanced Synthesis and Catalysis, 2008, 350, 2365-2372.	4.3	55
60	Copper(i) complexes as catalysts for the synthesis of N-sulfonyl-1,2,3-triazoles from N-sulfonylazides and alkynes. Organic and Biomolecular Chemistry, 2010, 8, 536-538.	2.8	54
61	Copperâ^'Homoscorpionate Complexes as Active Catalysts for Atom Transfer Radical Addition to Olefins. Inorganic Chemistry, 2007, 46, 7725-7730.	4.0	52
62	Mechanistic Studies on Gold-Catalyzed Direct Arene C–H Bond Functionalization by Carbene Insertion: The Coinage-Metal Effect. Organometallics, 2017, 36, 172-179.	2.3	52
63	Dinuclear Copper(I) Complexes as Precatalysts in Ullmann and Goldberg Coupling Reactions. Organometallics, 2009, 28, 3815-3821.	2.3	50
64	Vinylic Câ^'H Bond Activation and Hydrogenation Reactions of Tpâ€~Ir(C2H4)(L) Complexes. Inorganic Chemistry, 1998, 37, 4538-4546.	4.0	49
65	The Mechanism of the Catalytic Functionalization of Haloalkanes by Carbene Insertion: An Experimental and Theoretical Study. Organometallics, 2009, 28, 5968-5981.	2.3	49
66	Polynuclear Copper(I) Complexes with Chelating Bis―and Trisâ€∢i>Nâ€Heterocyclic Carbene Ligands: Catalytic Activity in Nitrene and Carbene Transfer Reactions. European Journal of Organic Chemistry, 2012, 2012, 1367-1372.	2.4	49
67	Iridapyrrole Complexes via Formal 3 + 2 Cycloaddition of Iridium Alkenyls to Acetonitrile. Organometallics, 1996, 15, 2192-2194.	2.3	48
68	Synthesis, Characterization, and Reactivity of [((iPr)2P(CH2)3P(iPr)2)(PCy3)PdH][OR]. Organometallics, 2001, 20, 337-345.	2.3	48
69	Gold-promoted styrene polymerization. Chemical Communications, 2008, , 759-761.	4.1	48
70	Copper–Carbene Intermediates in the Copperâ€Catalyzed Functionalization of OH Bonds. Chemistry - A European Journal, 2015, 21, 9769-9775.	3.3	48
71	Homogeneous Metal-Based Catalysis in Supercritical Carbon Dioxide as Reaction Medium. ACS Catalysis, 2016, 6, 4265-4280.	11.2	48
72	Synthesis and catalytic applications of 1,2,3-triazolylidene gold(<scp>i</scp>) complexes in silver-free oxazoline syntheses and C–H bond activation. Dalton Transactions, 2016, 45, 14591-14602.	3.3	48

#	Article	IF	CITATIONS
73	Enantio―and Diastereoselective Cyclopropanation of 1â€Alkenylboronates: Synthesis of 1â€Borylâ€2,3â€Disubstituted Cyclopropanes. Angewandte Chemie - International Edition, 2018, 57, 2334-2338.	13.8	48
74	From Homogeneous to Heterogeneous Catalysis:  Novel Anchoring of Polypyrazolylborate Copper(I) Complexes on Silica Gel through Classical and Nonclassical Hydrogen Bonds. Use as Catalysts of the Olefin Cyclopropanation Reaction. Organometallics, 2000, 19, 285-289.	2.3	47
75	Mechanism of Side Reactions in Alkane Cĩ£įH Bond Functionalization by Diazo Compounds Catalyzed by Ag and Cu Homoscorpionate Complexes—A DFT Study. ChemCatChem, 2011, 3, 1646-1652.	3.7	47
76	Discrete Cu(<scp>i</scp>) complexes for azide–alkyne annulations of small molecules inside mammalian cells. Chemical Science, 2018, 9, 1947-1952.	7.4	47
77	Substitution and Hydrogenation Reactions on Rhodium(I)â^'Ethylene Complexes of the Hydrotris(pyrazolyl)borate Ligands Tpâ€~ (Tpâ€~ = Tp, TpMe2)â€. Inorganic Chemistry, 2000, 39, 180-188.	4.0	46
78	A fully recyclable heterogenized Cu catalyst for the general carbene transfer reaction in batch and flow. Chemical Science, 2015, 6, 1510-1515.	7.4	46
79	Dimensioning the Term Carbenoid. Chemistry - A European Journal, 2017, 23, 14389-14393.	3.3	46
80	The use of polypyrazolylborate copper(I) complexes as catalysts in the conversion of olefins into cyclopropanes, aziridines and epoxides and alkynes into cyclopropenes. Journal of Organometallic Chemistry, 2001, 617-618, 110-118.	1.8	45
81	Reaction of Alkynes and Azides: Not Triazoles Through Copper–Acetylides but Oxazoles Through Copper–Nitrene Intermediates. Chemistry - A European Journal, 2014, 20, 3463-3474.	3.3	45
82	CC Bond-Forming Reactions of IrIII-Alkenyls and Nitriles or Aldehydes: Generation of Reactive Hydride- and Alkyl-Alkylidene Compounds and Observation of a Reversible 1,2-H Shift in Stable Hydride–IrIII Alkylidene Complexes. Chemistry - A European Journal, 2002, 8, 5132-5146.	3.3	43
83	Very Efficient, Reusable Copper Catalyst for Carbene Transfer Reactions under Biphasic Conditions Using Ionic Liquids. Organic Letters, 2006, 8, 557-560.	4.6	43
84	Catalytic C–H amination of alkanes with sulfonimidamides: silver(I)-scorpionates vs. dirhodium(II) carboxylates. Tetrahedron, 2013, 69, 4488-4492.	1.9	43
85	Copper-Catalyzed Carbene Insertion into Oâ^'H Bonds:  High Selective Conversion of Alcohols into Ethers. Organometallics, 2003, 22, 2914-2918.	2.3	40
86	Measuring the Relative Reactivity of the Carbon–Hydrogen Bonds of Alkanes as Nucleophiles. Angewandte Chemie - International Edition, 2018, 57, 13848-13852.	13.8	40
87	Trispyrazolylborate coinage metals complexes: Structural features and catalytic transformations. Coordination Chemistry Reviews, 2019, 390, 171-189.	18.8	40
88	A computational view on the reactions of hydrocarbons with coinage metal complexes. Journal of Organometallic Chemistry, 2015, 784, 2-12.	1.8	39
89	Formation of carbonyl-carbonate complexes of molybdenum by reductive disproportionation of carbon dioxide. X-ray structure of Mo4(.mu.4-CO3)(CO)2(O)2(.mu.2-O)2(.mu.2-OH)4(PMe3)6. Inorganic Chemistry, 1991, 30, 1493-1499.	4.0	37
90	Gold-catalyzed naphthalene functionalization. Beilstein Journal of Organic Chemistry, 2011, 7, 653-657.	2.2	37

#	Article	IF	CITATIONS
91	An Efficient, Selective, and Reducing Agent-Free Copper Catalyst for the Atom-Transfer Radical Addition of Halo Compounds to Activated Olefins. Inorganic Chemistry, 2010, 49, 642-645.	4.0	36
92	Mechanistic and Computational Studies of the Atom Transfer Radical Addition of CCl ₄ to Styrene Catalyzed by Copper Homoscorpionate Complexes. Inorganic Chemistry, 2011, 50, 2458-2467.	4.0	36
93	Catalytic Nitrene Transfer To Alkynes: A Novel and Versatile Route for the Synthesis of Sulfinamides and Isothiazoles. Angewandte Chemie - International Edition, 2017, 56, 12842-12847.	13.8	36
94	Synthesis and properties of nitrosyl complexes of molybdenum and tungsten containing halide and trimethylphosphine ligands. Crystal and molecular structures of MoCl3(NO)(PMe3)3 and MoCl(NO)(S2CPMe3-S,S',C)(PMe3)2. Inorganic Chemistry, 1989, 28, 2120-2127.	4.0	35
95	Nitrene Transfer to Trimethylphosphine from Cationic Tungsten Tosylnitrene Complexes [Tp'(CO)2W(NTs)][X]. Inorganic Chemistry, 1994, 33, 6050-6056.	4.0	35
96	Functionalization of Nonâ€activated CH Bonds of Alkanes: An Effective and Recyclable Catalytic System Based on Fluorinated Silver Catalysts and Solvents. Chemistry - A European Journal, 2013, 19, 1327-1334.	3.3	35
97	Does the Facile Inter- and Intramolecular Cĩ£¿H Bond Activation by Tp*–Rh Complexes Proceed via RhI or RhIII Intermediates?. Angewandte Chemie International Edition in English, 1995, 34, 231-233.	4.4	34
98	Copper-Catalyzed Addition of Ethyl Diazoacetate to Furans:  An Alternative to Dirhodium(II) Tetraacetate. Journal of Organic Chemistry, 2005, 70, 6101-6104.	3.2	34
99	Water as the Reaction Medium for Intermolecular C–H Alkane Functionalization in Micellar Catalysis. ACS Catalysis, 2017, 7, 3707-3711.	11.2	34
100	Câ^'H Activation Reactions on Rh(I)â^'Ethylene Complexes of the Hydrotris(3,5-dimethylpyrazolyl)borate Ligand, TpMe2. Organometallics, 1999, 18, 4304-4310.	2.3	32
101	Polypyrazolylborate copper(i) complexes as catalysts of the homogeneous and heterogeneous styrene epoxidation reaction. Chemical Communications, 2000, , 1853-1854.	4.1	32
102	Unusual Polybrominated Polypyrazolylborates and Their Copper(I) Complexes:  Synthesis, Characterization, and Catalytic Activity. Inorganic Chemistry, 2007, 46, 780-787.	4.0	32
103	Copper(I)â^'Olefin Complexes: The Effect of the Trispyrazolylborate Ancillary Ligand in Structure and Reactivity. Organometallics, 2010, 29, 3481-3489.	2.3	32
104	Catalytic Hydrocarbon Functionalization with Gold Complexes Containing Nâ€Heterocyclic Carbene Ligands with Pendant Donor Groups. European Journal of Inorganic Chemistry, 2012, 2012, 1380-1386.	2.0	32
105	Synthesis, Structural Characterization, Reactivity, and Catalytic Properties of Copper(I) Complexes with a Series of Tetradentate Tripodal Tris(pyrazolylmethyl)amine Ligands. Inorganic Chemistry, 2014, 53, 4192-4201.	4.0	32
106	Mechanism of the Selective Fe-Catalyzed Arene Carbon–Hydrogen Bond Functionalization. ACS Catalysis, 2018, 8, 4313-4322.	11.2	32
107	Effects of the Substituents in the Tp ^x Cu Activation of Dioxygen:  An Experimental Study. Inorganic Chemistry, 2007, 46, 7428-7435.	4.0	31
108	Highly active gold-based catalyst for the reaction of benzaldehyde with ethyl diazoacetate. Chemical Communications, 2009, , 5153.	4.1	31

#	Article	IF	CITATIONS
109	Cu(i)-catalyzed atom transfer radical cyclization of trichloroacetamides tethered to electron-deficient, -neutral, and -rich alkenes: synthesis of polyfunctionalized 2-azabicyclo[3.3.1]nonanes. Chemical Communications, 2012, 48, 8799.	4.1	31
110	Chiral, Sterically Demanding N-Heterocyclic Carbenes Fused into a Heterobiaryl Skeleton: Design, Synthesis, and Structural Analysis. Organometallics, 2015, 34, 1328-1338.	2.3	31
111	1,2,3-Triazoles from carbonyl azides and alkynes: filling the gap. Chemical Communications, 2014, 50, 8978.	4.1	30
112	Catalyst design in the alkane C–H bond functionalization of alkanes by carbene insertion with TpxM complexes (TpxÂ=Âhydrotrispyrazolylborate ligand; MÂ=ÂCu, Ag). Journal of Organometallic Chemistry, 2015, 793, 108-113.	1.8	30
113	A competing, dual mechanism for catalytic direct benzene hydroxylation from combined experimental-DFT studies. Chemical Science, 2017, 8, 8373-8383.	7.4	30
114	Iron and Manganese Catalysts for the Selective Functionalization of Arene C(sp ²)â^'H Bonds by Carbene Insertion. Angewandte Chemie, 2016, 128, 6640-6644.	2.0	29
115	Rotational isomerism and fluxional behavior of bis(carbon dioxide) adducts of molybdenum. Journal of the American Chemical Society, 1991, 113, 9210-9218.	13.7	28
116	Catalytic Carbonâ^'Hydrogen Bond Functionalization in an Ionic Liquid Medium. Organometallics, 2007, 26, 6661-6668.	2.3	26
117	Copper(I) Complexes with Trispyrazolylmethane Ligands: Synthesis, Characterization, and Catalytic Activity in Cross-Coupling Reactions. Inorganic Chemistry, 2012, 51, 8298-8306.	4.0	26
118	Syntheses of a Novel Fluorinated Trisphosphinoborate Ligand and Its Copper and Silver Complexes. Catalytic Activity toward Nitrene Transfer Reactions. Inorganic Chemistry, 2014, 53, 3991-3999.	4.0	26
119	Metal-Catalyzed Postpolymerization Strategies for Polar Group Incorporation into Polyolefins Containing C–C, C╀, and Aromatic Rings. Macromolecules, 2021, 54, 4971-4985.	4.8	26
120	Novel carbon dioxide and carbonyl carbonate complexes of molybdenum. The X-ray structures of trans-[Mo(CO2)2{HN(CH2CH2PMe2)2}(PMe3)] and [Mo3(μ2-CO3)(μ2-O)2(O)2(CO)2(H2O)(PMe3)6]·H2O. Journal of Chemistry, 2005, 29, 109-115.	New	25
121	Silver-catalyzed silicon–hydrogen bond functionalization by carbene insertion. Dalton Transactions, 2013, 42, 1191-1195.	3.3	25
122	Catalytic Functionalization of Methane and Light Alkanes in Supercritical Carbon Dioxide. Chemistry - A European Journal, 2014, 20, 11013-11018.	3.3	25
123	Intermolecular Allene Functionalization by Silver-Nitrene Catalysis. Journal of the American Chemical Society, 2020, 142, 13062-13071.	13.7	25
124	Recent Advances in Copper-Catalyzed Radical C–H Bond Activation Using N–F Reagents. Synthesis, 2021, 53, 51-64.	2.3	25
125	Simple low-valent amido, imido and nitrido complexes of tungsten. Journal of the American Chemical Society, 1992, 114, 7928-7929.	13.7	24
126	Rediscovering copper-based catalysts for intramolecular carbon–hydrogen bond functionalization by carbene insertion. Organic and Biomolecular Chemistry, 2009, 7, 4777.	2.8	24

#	Article	IF	CITATIONS
127	Functionalization of C _{<i>n</i>} H _{2<i>n</i>+2} Alkanes: Supercritical Carbon Dioxide Enhances the Reactivity towards Primary Carbon–Hydrogen Bonds. ChemCatChem, 2015, 7, 3254-3260.	3.7	23
128	Ethylene dimerization: an alternative route involving vinyl hydride intermediates. Journal of the Chemical Society Chemical Communications, 1992, , 8-9.	2.0	22
129	Hydrotris(3-mesitylpyrazolyl)borato-copper(i) alkyne complexes: synthesis, structural characterization and rationalization of their activities as alkyne cyclopropenation catalysts. Dalton Transactions, 2012, 41, 5319.	3.3	22
130	Silverâ€Catalyzed Functionalization of Esters by Carbene Transfer: The Role of Ylide Zwitterionic Intermediates. ChemCatChem, 2014, 6, 2206-2210.	3.7	22
131	Copper-Catalyzed Nitrene Transfer as a Tool for the Synthesis of N-Substituted 1,2-Dihydro- and 1,2,3,4-Tetrahydropyridines. Organometallics, 2012, 31, 7839-7843.	2.3	20
132	Triazolylideneâ€Iridium Complexes with a Pendant Pyridyl Group for Cooperative Metal–Ligand Induced Catalytic Dehydrogenation of Amines. Chemistry - A European Journal, 2017, 23, 8901-8911.	3.3	20
133	Two Copper-Carbenes from One Diazo Compound. Journal of the American Chemical Society, 2021, 143, 4837-4843.	13.7	20
134	Introduction to the <i>Ennobling a Base Metal: Presenting Copper in Organometallic Chemistry</i> Issue. Organometallics, 2012, 31, 7631-7633.	2.3	19
135	Catalytic Functionalization of C–H Bonds of Azulene by Carbene/Nitrene Incorporation. Journal of Organic Chemistry, 2018, 83, 11125-11132.	3.2	19
136	The Effect of Catalyst Loading in Copper-Catalyzed Cyclohexane Functionalization by Carbene Insertion. European Journal of Inorganic Chemistry, 2007, 2007, 2848-2852.	2.0	18
137	Nitrene transfer reactions catalysed by copper(I) complexes in ionic liquid using chloramine-T. Dalton Transactions, 2009, , 730-734.	3.3	18
138	[(PhBP ₃)Cu(PPh ₃)] as a Surrogate of Tp ^x CuL in Homogeneous Catalysis (PhBP ₃ = PhB(CH ₂ PPh ₂) ₃ ; Tp ^x =) Tj	ETQq0 0 0	rg B T /Overlc
139	A Quantitative Model for Alkane Nucleophilicity Based on Câ ^{~°} H Bond Structural/Topological Descriptors. Angewandte Chemie - International Edition, 2020, 59, 3112-3116.	13.8	18
140	Rotational isomerism in bis(carbon dioxide) complexes of molybdenum generated by conrotatory motion of the CO2 ligands. Organometallics, 1990, 9, 1337-1339.	2.3	17
141	Catalytic cyclopropanation of polybutadienes. Journal of Polymer Science Part A, 2010, 48, 4439-4444.	2.3	17
142	Intramolecular cycloaddition of azomethine ylides, from imines of O-acylsalicylic aldehyde and ethyl diazoacetate, to ester carbonyl – experimental and DFT computational study. Organic and Biomolecular Chemistry, 2012, 10, 5582.	2.8	17
143	Catalytic Copper-Mediated Ring Opening and Functionalization of Benzoxazoles. ACS Catalysis, 2014, 4, 4215-4222.	11.2	16
144	Dinitrogen, butadiene and related complexes of molybdenum. Crystal structures of [Mo(N2)(PMe3)5] and [Mo(η3-CH3CHCHCH2)(η4-C4H6)(PEt3)2][BF4]. Journal of the Chemical Society Dalton Transactions, 1995, , 3801-3808.	1.1	15

#	Article	IF	CITATIONS
145	Alkane Dehydrogenation by Sequential, Double Câ^'H Bond Activation by TpBr3Ir(C2H4)2(TpBr3=) Tj ETQq1 1	0.784314 r 2.3	gBT_/Overlock
146	Molybdenum and tungsten complexes with carbon dioxide and ethylene ligands. Chemical Science, 2019, 10, 8541-8546.	7.4	15
147	Group 11 tris(pyrazolyl)methane complexes: structural features and catalytic applications. Dalton Transactions, 2019, 48, 10772-10781.	3.3	15
148	Synthesis and characterisation of rhodium(I) complexes containing the dihydrobis(pyrazolyl)borate		

#	Article	IF	CITATIONS
163	Improving Catalyst Activity in Hydrocarbon Functionalization by Remote Pyrene–Graphene Stacking. Chemistry - A European Journal, 2019, 25, 9534-9539.	3.3	12
164	Copper atalyzed Dehydrogenative Amidation of Light Alkanes. Angewandte Chemie - International Edition, 2021, 60, 18467-18471.	13.8	12
165	Supercritical Carbon Dioxide: A Promoter of Carbon–Halogen Bond Heterolysis. Angewandte Chemie - International Edition, 2013, 52, 13298-13301.	13.8	11
166	Methane functionalization in water with micellar catalysis. Chemical Communications, 2019, 55, 11243-11246.	4.1	11
167	Copper atalyzed Selective Pyrrole Functionalization by Carbene Transfer Reaction. Advanced Synthesis and Catalysis, 2020, 362, 1998-2004.	4.3	11
168	Catalytic Nitrene Transfer To Alkynes: A Novel and Versatile Route for the Synthesis of Sulfinamides and Isothiazoles. Angewandte Chemie, 2017, 129, 13022-13027.	2.0	10
169	Coinage metal complexes bearing fluorinated N-Heterocyclic carbene ligands. Journal of Organometallic Chemistry, 2019, 898, 120856.	1.8	10
170	The Elusive Palladiumâ€Diazo Adduct Captured: Synthesis, Isolation and Structural Characterization of [(ArNHCâ€PPh ₂)Pd(η ² â€N ₂ C(Ph)CO ₂ Et)]. Chemistry - A European Journal, 2017, 23, 7667-7671.	3.3	9
171	Trispyrazolylborate Ligands Supported on Vinyl Addition Polynorbornenes and Their Copper Derivatives as Recyclable Catalysts. Chemistry - A European Journal, 2019, 25, 556-563.	3.3	9
172	Aerobic intramolecular carbon–hydrogen bond oxidation promoted by Cu(<scp>i</scp>) complexes. Dalton Transactions, 2020, 49, 14647-14655.	3.3	9
173	Hydrotrispyrazolylborate-copper complexes as catalysts for the styrene cyclopropanation reaction with ethyl diazoacetate under homogeneous and heterogeneous conditions. Inorganica Chimica Acta, 2009, 362, 4599-4602.	2.4	7
174	Ruthenium-Catalyzed Heck-Type Alkenylation of Alkyl Bromides. Journal of Organic Chemistry, 2019, 84, 8289-8296.	3.2	7
175	Gold-catalyzed ethylene cyclopropanation. Beilstein Journal of Organic Chemistry, 2019, 15, 67-71.	2.2	7
176	The Tp x M Core in C sp 3 –H Bond Functionalization Reactions: Comparing Carbene, Nitrene, and Oxo Insertion Processes (Tp x = Scorpionate Ligand; M = Cu, Ag). European Journal of Inorganic Chemistry, 2020, 2020, 879-885.	2.0	7
177	Alkoxydiaminophosphine Ligands as Surrogates of NHCs in Copper Catalysis. Chemistry - A European Journal, 2020, 26, 10330-10335.	3.3	7
178	Selective Functionalization of Arene C(sp ²)–H Bonds by Gold Catalysis: The Role of Carbene Substituents. ACS Catalysis, 2022, 12, 6851-6856.	11.2	7
179	Gold Complexes with ADAP Ligands: Effect of Bulkiness in Catalytic Carbene Transfer Reactions (ADAP) Tj ETQq1	1 0,78431 2.3	L4 rgBT /Ove
180	Copper atalyzed Dehydrogenative Amidation of Light Alkanes. Angewandte Chemie, 2021, 133, 18615-18619.	2.0	6

#	Article	IF	CITATIONS
181	Introducing the Catalytic Amination of Silanes via Nitrene Insertion. Journal of the American Chemical Society, 2022, 144, 10608-10614.	13.7	6
182	Cu-, Ag-, and Au-NHC Complexes in Catalysis. , 2006, , 257-274.		5
183	Evidencing an inner-sphere mechanism for NHC-Au(I)-catalyzed carbene-transfer reactions from ethyl diazoacetate. Beilstein Journal of Organic Chemistry, 2015, 11, 2254-2260.	2.2	5
184	Favoring Alkane Primary Carbon–Hydrogen Bond Functionalization in Supercritical Carbon Dioxide as Reaction Medium. ACS Sustainable Chemistry and Engineering, 2019, 7, 7346-7352.	6.7	5
185	A Quantitative Model for Alkane Nucleophilicity Based on Câ [°] 'H Bond Structural/Topological Descriptors. Angewandte Chemie, 2020, 132, 3136-3140.	2.0	4
186	Pyrrole Functionalization by Copperâ€Catalyzed Nitrene Transfer Reactions. Israel Journal of Chemistry, 2020, 60, 485-489.	2.3	4
187	Development of Molecular Complexity through Nitrene-Transfer Reactions Catalyzed by Copper and Silver Scorpionate Complexes. Synlett, 2021, 32, 763-774.	1.8	4
188	Grapheneâ€Supported, Wellâ€Defined Metalâ€Based Catalysts for Câ^'H Bond Functionalization and Related Reactions. Advanced Synthesis and Catalysis, 2021, 363, 1740-1755.	4.3	4
189	Make It Green: Copperâ€Catalyzed Olefin Aziridination in Water with an Iminoiodonane. European Journal of Inorganic Chemistry, 2021, 2021, 5091-5095.	2.0	4
190	Mechanistic Studies on the Synthesis of Pyrrolidines and Piperidines via Copper-Catalyzed Intramolecular C–H Amination. Organometallics, 2022, 41, 1099-1105.	2.3	4
191	Direct Benzene Hydroxylation with Dioxygen Induced by Copper Complexes: Uncovering the Active Species by DFT Calculations. Organometallics, 2022, 41, 1892-1904.	2.3	4
192	Heterogeneous Olefin Aziridination Reactions Catalyzed by Polymerâ€Bound Tris(triazolyl)methane Copper Complexes. European Journal of Inorganic Chemistry, 2021, 2021, 3727-3730.	2.0	3
193	Einfache inter―und intramolekulare CHâ€Aktivierung mit Tp [*] â€Rhâ€Komplexen: Rh ^{Ioder Rh^{III}â€Zwischenstufen?. Angewandte Chemie, 1995, 107, 242-244.}	>ậ€• 2.0	2
194	Alkane Carbonâ€Hydrogen Bond Functionalization as a Tool Toward a Steric Parameter for Hydrotris(pyrazolyl)borate (Tp ^x) Ligands. Israel Journal of Chemistry, 2017, 57, 1047-1052.	2.3	2
195	Copper(I)â€Arene Complexes with a Sterically Hindered Tris(pyrazolyl)borate Ligand. European Journal of Inorganic Chemistry, 2018, 2018, 2026-2030.	2.0	2
196	Multigram Synthesis of Thallium Trispyrazolylborate Compounds. Synthesis, 2018, 50, 3333-3336.	2.3	2
197	Gold nanoparticle-catalysed functionalization of carbon–hydrogen bonds by carbene transfer reactions. Dalton Transactions, 2022, 51, 5250-5256.	3.3	2
198	Catalytic Insertion of Diazo Compounds into N—H Bonds: The Copper Alternative ChemInform, 2003, 34, no.	0.0	0

#	Article	IF	CITATIONS
199	Copper-Homoscorpionate Complexes as Very Active Catalysts for the Olefin Aziridination Reaction ChemInform, 2004, 35, no.	0.0	0
200	Copper-Catalyzed Addition of Ethyl Diazoacetate to Furans: An Alternative to Dirhodium(II) Tetraacetate ChemInform, 2005, 36, no.	0.0	0
201	Frontispiece: Catalytic Nitrene Transfer To Alkynes: A Novel and Versatile Route for the Synthesis of Sulfinamides and Isothiazoles. Angewandte Chemie - International Edition, 2017, 56, .	13.8	0
202	Frontispiz: Catalytic Nitrene Transfer To Alkynes: A Novel and Versatile Route for the Synthesis of Sulfinamides and Isothiazoles. Angewandte Chemie, 2017, 129, .	2.0	0
203	Frontispiece: Dimensioning the Term Carbenoid. Chemistry - A European Journal, 2017, 23, .	3.3	0
204	Frontispiece: Enantio―and Diastereoselective Cyclopropanation of 1â€Alkenylboronates: Synthesis of 1â€Borylâ€2,3â€Disubstituted Cyclopropanes. Angewandte Chemie - International Edition, 2018, 57, .	13.8	0
205	Titelbild: Measuring the Relative Reactivity of the Carbon–Hydrogen Bonds of Alkanes as Nucleophiles (Angew. Chem. 42/2018). Angewandte Chemie, 2018, 130, 13885-13885.	2.0	0
206	Frontispiz: Enantio―and Diastereoselective Cyclopropanation of 1â€Alkenylboronates: Synthesis of 1â€Borylâ€2,3â€Disubstituted Cyclopropanes. Angewandte Chemie, 2018, 130, .	2.0	0
207	<i>In My Element</i> : Copper. Chemistry - A European Journal, 2019, 25, 6650-6650.	3.3	0
208	The Tp x M Core in C sp 3 –H Bond Functionalization Reactions: Comparing Carbene, Nitrene, and Oxo Insertion Processes (Tp x = Scorpionate Ligand; M = Cu, Ag). European Journal of Inorganic Chemistry, 2020, 2020, 869-869.	2.0	0