Wolfgang Gärtner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5697316/publications.pdf

Version: 2024-02-01

218 papers

7,459 citations

43 h-index 72 g-index

228 all docs 228 docs citations

times ranked

228

4588 citing authors

#	Article	IF	CITATIONS
1	Longâ€Term Preservation of Shortâ€Lived Photoproducts of Phytochromes at Room Temperature. ChemPhotoChem, 2022, 6, .	3.0	3
2	Proteomic Signatures of Microbial Adaptation to the Highest Ultraviolet-Irradiation on Earth: Lessons From a Soil Actinobacterium. Frontiers in Microbiology, 2022, 13, 791714.	3 . 5	1
3	Light- and pH-dependent structural changes in cyanobacteriochrome AnPixJg2. Photochemical and Photobiological Sciences, 2022, 21, 447-469.	2.9	6
4	A red-green photochromic bacterial protein as a new contrast agent for improved photoacoustic imaging. Photoacoustics, 2022, 26, 100358.	7.8	2
5	Topical collection in celebration of Silvia Elsa Braslavsky's 80th Birthday. Photochemical and Photobiological Sciences, 2022, 21, 435-436.	2.9	O
6	Mapping the role of aromatic amino acids within a blue-light sensing LOV domain. Physical Chemistry Chemical Physics, 2021, 23, 16767-16775.	2.8	7
7	A light life together: photosensing in the plant microbiota. Photochemical and Photobiological Sciences, 2021, 20, 451-473.	2.9	26
8	The Red Edge: Bilin-Binding Photoreceptors as Optogenetic Tools and Fluorescence Reporters. Chemical Reviews, 2021, 121, 14906-14956.	47.7	22
9	Lyophilization Reveals a Multitude of Structural Conformations in the Chromophore of a Cph2-like Phytochrome. Journal of Physical Chemistry B, 2020, 124, 7115-7127.	2.6	5
10	Effect of the PHY Domain on the Photoisomerization Step of the Forward P r â†'P fr Conversion of a Knotless Phytochrome. Chemistry - A European Journal, 2020, 26, 17261-17266.	3.3	11
11	Tongue Refolding in the Knotless Cyanobacterial Phytochrome All2699. Biochemistry, 2020, 59, 2047-2054.	2.5	7
12	The first molecular characterisation of blue- and red-light photoreceptors from <i>Methylobacterium radiotolerans</i> . Physical Chemistry Chemical Physics, 2020, 22, 12434-12446.	2.8	9
13	Structural elements regulating the photochromicity in a cyanobacteriochrome. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2432-2440.	7.1	59
14	The interplay between chromophore and protein determines the extended excited state dynamics in a single-domain phytochrome. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16356-16362.	7.1	28
15	Bacteriophytochromes from Pseudomonas syringae pv. tomato DC3000 modulate the early stages of plant colonization during bacterial speck disease. European Journal of Plant Pathology, 2020, 156, 695-712.	1.7	12
16	The Lumi-R Intermediates of Prototypical Phytochromes. Journal of Physical Chemistry B, 2020, 124, 4044-4055.	2.6	10
17	Unequal twins: Unraveling the reaction mechanism of dimeric histidine kinases. Journal of Biological Chemistry, 2020, 295, 8118-8119.	3.4	O
18	Dynamics and efficiency of photoswitching in biliverdin-binding phytochromesâ€. Photochemical and Photobiological Sciences, 2019, 18, 2484-2496.	2.9	18

#	Article	IF	CITATIONS
19	MAS NMR on a Red/Far-Red Photochromic Cyanobacteriochrome All2699 from Nostoc. International Journal of Molecular Sciences, 2019, 20, 3656.	4.1	14
20	Role of the Propionic Side Chains for the Photoconversion of Bacterial Phytochromes. Biochemistry, 2019, 58, 3504-3519.	2.5	13
21	Die effektive Konjugationsl \tilde{A} ge ist f \tilde{A}^{1} /4r die spektrale Verschiebung im rot/gr \tilde{A}^{1} /4n schaltenden Cyanobakteriochrom Slr1393g3 verantwortlich. Angewandte Chemie, 2019, 131, 1952-1957.	2.0	5
22	Photolyases and Cryptochromes in <scp>UV</scp> â€resistant Bacteria from Highâ€altitude Andean Lakes. Photochemistry and Photobiology, 2019, 95, 315-330.	2.5	24
23	The Effective Conjugation Length Is Responsible for the Red/Green Spectral Tuning in the Cyanobacteriochrome Slr1393g3. Angewandte Chemie - International Edition, 2019, 58, 1934-1938.	13.8	47
24	Introduction: Optogenetics and Photopharmacology. Chemical Reviews, 2018, 118, 10627-10628.	47.7	8
25	Chromophorylation of cyanobacteriochrome Slr1393 from Synechocystis sp. PCC 6803 is regulated by protein Slr2111 through allosteric interaction. Journal of Biological Chemistry, 2018, 293, 17705-17715.	3.4	4
26	Far-red acclimating cyanobacterium as versatile source for bright fluorescent biomarkers. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 1649-1656.	4.1	15
27	The Redâ€∫Greenâ€Switching GAF3 of Cyanobacteriochrome Slr1393 from Synechocystis sp. PCC6803 Regulates the Activity of an Adenylyl Cyclase. ChemBioChem, 2018, 19, 1887-1895.	2.6	10
28	3D Structures of Plant Phytochrome A as Pr and Pfr From Solid-State NMR: Implications for Molecular Function. Frontiers in Plant Science, 2018, 9, 498.	3.6	32
29	FRET in a Synthetic Flavin―and Bilinâ€binding Protein. Photochemistry and Photobiology, 2017, 93, 1057-1062.	2.5	10
30	Characterization of the Blue–Lightâ€Activated Adenylyl Cyclase <scp>mPAC</scp> by Flash Photolysis and <scp>FTIR</scp> Spectroscopy. Photochemistry and Photobiology, 2017, 93, 857-864.	2.5	4
31	Chromophorylation (in Escherichia coli) of allophycocyanin B subunits from far-red light acclimated Chroococcidiopsis thermalis sp. PCC7203. Photochemical and Photobiological Sciences, 2017, 16, 1153-1161.	2.9	8
32	<i>Inâ€Planta</i> Expression: Searching for the Genuine Chromophores of Cryptochromeâ€3 from <i>Arabidopsis thaliana</i> Photochemistry and Photobiology, 2017, 93, 382-384.	2.5	4
33	Solving Blue Light Riddles: New Lessons from Flavinâ€binding <scp>LOV</scp> Photoreceptors. Photochemistry and Photobiology, 2017, 93, 141-158.	2.5	52
34	A Heartfelt Thanks to the Editors and Contributors of Special Issue 93:3. Photochemistry and Photobiology, 2017, 93, 1532-1533.	2.5	0
35	Structures and enzymatic mechanisms of phycobiliprotein lyases CpcE/F and PecE/F. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13170-13175.	7.1	37
36	Selective Photoreceptor Gene Knockâ€out Reveals a Regulatory Role for the Growth Behavior of <i>Pseudomonas syringae</i> . Photochemistry and Photobiology, 2016, 92, 571-578.	2.5	11

#	Article	IF	Citations
37	Electric Fieldâ€Assisted Photochemical Water Splitting Should Operate with 287 nm Light. Photochemistry and Photobiology, 2016, 92, 399-409.	2.5	5
38	Near infrared fluorescent biliproteins generated from bacteriophytochrome AphB of Nostoc sp. PCC 7120. Photochemical and Photobiological Sciences, 2016, 15, 546-553.	2.9	7
39	Forged Under the Sun: Life and Art of Extremophiles from Andean Lakes. Photochemistry and Photobiology, 2016, 92, 14-28.	2.5	58
40	Electron transport via a soluble photochromic photoreceptor. Physical Chemistry Chemical Physics, 2016, 18, 25671-25675.	2.8	5
41	Aus dem Werkzeugkasten der Hirnforscher. Nachrichten Aus Der Chemie, 2016, 64, 1054-1059.	0.0	0
42	Rhodopsins carrying modified chromophores \hat{a} €" the \hat{a} €" making of \hat{a} €™, structural modelling and their light-induced reactivity. Photochemical and Photobiological Sciences, 2016, 15, 297-308.	2.9	5
43	Functional Green-Tuned Proteorhodopsin from Modern Stromatolites. PLoS ONE, 2016, 11, e0154962.	2.5	19
44	The Evolution and Functional Role of Flavinâ€based Prokaryotic Photoreceptors. Photochemistry and Photobiology, 2015, 91, 1021-1031.	2.5	22
45	A Red/Green Cyanobacteriochrome Sustains Its Color Despite a Change in the Bilin Chromophore's Protonation State. Biochemistry, 2015, 54, 5839-5848.	2.5	44
46	Visualizing the relevance of bacterial blue―and redâ€light receptors during plant–pathogen interaction. Environmental Microbiology Reports, 2015, 7, 795-802.	2.4	20
47	Functional Characterization of a <scp>LOV</scp> â€Histidine Kinase Photoreceptor from <i>Xanthomonas citri</i> subsp. <i>Citri</i> Photochemistry and Photobiology, 2015, 91, 1123-1132.	2.5	8
48	Conformational heterogeneity of the Pfr chromophore in plant and cyanobacterial phytochromes. Frontiers in Molecular Biosciences, 2015, 2, 37.	3.5	26
49	The terminal phycobilisome emitter, L _{CM} : A light-harvesting pigment with a phytochrome chromophore. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15880-15885.	7.1	69
50	Photochromic conversion in a red/green cyanobacteriochrome from Synechocystis PCC6803: quantum yields in solution and photoswitching dynamics in living E. coli cells. Photochemical and Photobiological Sciences, 2015, 14, 229-237.	2.9	33
51	Redox-dependent Ligand Switching in a Sensory Heme-binding GAF Domain of the Cyanobacterium Nostoc sp. PCC7120. Journal of Biological Chemistry, 2015, 290, 19067-19080.	3.4	14
52	Color Tuning in Red/Green Cyanobacteriochrome AnPixJ: Photoisomerization at C15 Causes an Excited-State Destabilization. Journal of Physical Chemistry B, 2015, 119, 9688-9695.	2.6	32
53	Detailed insight into the ultrafast photoconversion of the cyanobacteriochrome Slr1393 from Synechocystis sp Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1335-1344.	1.0	42
54	The Dark Recovery Rate in the Photocycle of the Bacterial Photoreceptor YtvA Is Affected by the Cellular Environment and by Hydration. PLoS ONE, 2014, 9, e107489.	2.5	19

#	Article	IF	CITATIONS
55	From Plant Infectivity to Growth Patterns: The Role of Blue-Light Sensing in the Prokaryotic World. Plants, 2014, 3, 70-94.	3.5	23
56	Phototransformation of the Red Light Sensor Cyanobacterial Phytochrome 2 from Synechocystis Species Depends on Its Tongue Motifs. Journal of Biological Chemistry, 2014, 289, 25590-25600.	3.4	19
57	A cyanobacterial light activated adenylyl cyclase partially restores development of a Dictyostelium discoideum, adenylyl cyclase a null mutant. Journal of Biotechnology, 2014, 191, 246-249.	3.8	18
58	Combined Mutagenesis and Kinetics Characterization of the Bilinâ€Binding GAF Domain of the Protein Slr1393 from the Cyanobacterium <i>Synechocystis</i> PCC6803. ChemBioChem, 2014, 15, 1190-1199.	2.6	57
59	Orange fluorescent proteins constructed from cyanobacteriochromes chromophorylated with phycoerythrobilin. Photochemical and Photobiological Sciences, 2014, 13, 757-763.	2.9	14
60	First characterisation of a CPD-class I photolyase from a UV-resistant extremophile isolated from High-Altitude Andean Lakes. Photochemical and Photobiological Sciences, 2014, 13, 739-751.	2.9	32
61	<scp>LOV</scp> â€domain photoreceptor, encoded in a genomic island, attenuates the virulence of <i><scp>P</scp>seudomonas syringae</i> in lightâ€exposed <scp>A</scp> rabidopsis leaves. Plant Journal, 2013, 76, 322-331.	5 . 7	26
62	Spectroscopic and Theoretical Study on Electronically Modified Chromophores in LOV Domains: 8â€Bromo―and 8â€Trifluoromethylâ€Substituted Flavins. ChemBioChem, 2013, 14, 645-654.	2.6	19
63	A structural model for the full-length blue light-sensing protein YtvA from Bacillus subtilis, based on EPR spectroscopy. Photochemical and Photobiological Sciences, 2013, 12, 1855-1863.	2.9	12
64	A photochromic bacterial photoreceptor with potential for super-resolution microscopy. Photochemical and Photobiological Sciences, 2013, 12, 231-235.	2.9	35
65	Distance-tree analysis, distribution and co-presence of bilin- and flavin-binding prokaryotic photoreceptors for visible light. Photochemical and Photobiological Sciences, 2013, 12, 1144-1157.	2.9	46
66	Photoconversion Mechanism of the Second GAF Domain of Cyanobacteriochrome AnPixJ and the Cofactor Structure of Its Green-Absorbing State. Biochemistry, 2013, 52, 4871-4880.	2.5	68
67	Kinetic and Thermodynamic Analysis of the Light-induced Processes in Plant and Cyanobacterial Phytochromes. Biophysical Journal, 2013, 105, 2210-2220.	0.5	11
68	Photophysics of Structurally Modified Flavin Derivatives in the Blueâ€Light Photoreceptor YtvA: A Combined Experimental and Theoretical Study. ChemBioChem, 2013, 14, 1648-1661.	2.6	27
69	A LOV-domain-mediated blue-light-activated adenylate (adenylyl) cyclase from the cyanobacterium <i>Microcoleus chthonoplastes</i> PCC 7420. Biochemical Journal, 2013, 455, 359-365.	3.7	61
70	The amino acids surrounding the flavin 7a-methyl group determine the UVA spectral features of a LOV protein. Biological Chemistry, 2013, 394, 1517-1528.	2.5	30
71	Structure of the Biliverdin Cofactor in the Pfr State of Bathy and Prototypical Phytochromes. Journal of Biological Chemistry, 2013, 288, 16800-16814.	3.4	58
72	Spectroscopic and Electrochemical Characterization of the [NiFeSe] Hydrogenase from <i>Desulfovibrio vulgaris</i> Miyazaki F: Reversible Redox Behavior and Interactions between Electron Transfer Centers. ChemBioChem, 2013, 14, 1714-1719.	2.6	18

#	Article	IF	Citations
73	Complex formation between heme oxygenase and phytochrome during biosynthesis in Pseudomonas syringae pv. tomato. Photochemical and Photobiological Sciences, 2012, 11, 1026-1031.	2.9	16
74	Kurt Schaffner: from organic photochemistry to photobiology. Photochemical and Photobiological Sciences, 2012, 11, 872-880.	2.9	1
75	Solid-State NMR Spectroscopic Study of Chromophore–Protein Interactions in the Pr Ground State of Plant Phytochrome A. Molecular Plant, 2012, 5, 698-715.	8.3	30
76	The Evolution of Flavin-Binding Photoreceptors: An Ancient Chromophore Serving Trendy Blue-Light Sensors. Annual Review of Plant Biology, 2012, 63, 49-72.	18.7	166
77	Extremophilic Acinetobacter Strains from High-Altitude Lakes in Argentinean Puna: Remarkable UV-B Resistance and Efficient DNA Damage Repair. Origins of Life and Evolution of Biospheres, 2012, 42, 201-221.	1.9	62
78	Metagenomeâ€based Screening Reveals Worldwide Distribution of LOVâ€Domain Proteins. Photochemistry and Photobiology, 2012, 88, 107-118.	2.5	24
79	Exploring Chromophore-Binding Pocket: High-Resolution Solid-State 1H–13C Interfacial Correlation NMR Spectra with Windowed PMLG Scheme. Applied Magnetic Resonance, 2012, 42, 79-88.	1.2	7
80	Modulation of the Photocycle of a LOV Domain Photoreceptor by the Hydrogen-Bonding Network. Journal of the American Chemical Society, 2011, 133, 5346-5356.	13.7	91
81	On the Collective Nature of Phytochrome Photoactivation. Biochemistry, 2011, 50, 10987-10989.	2.5	21
82	Structure of the Chromophore Binding Pocket in the Pr State of Plant Phytochrome phyA. Journal of Physical Chemistry B, 2011, 115, 1220-1231.	2.6	38
83	Light Modulation of Cellular cAMP by a Small Bacterial Photoactivated Adenylyl Cyclase, bPAC, of the Soil Bacterium Beggiatoa. Journal of Biological Chemistry, 2011, 286, 1181-1188.	3.4	337
84	Chromophore Exchange in the Blue Lightâ€Sensitive Photoreceptor YtvA from <i>Bacillus subtilis</i> ChemBioChem, 2011, 12, 641-646.	2.6	23
85	Old Chromophores, New Photoactivation Paradigms, Trendy Applications: Flavins in Blue Lightâ€Sensing Photoreceptors ^{â€} . Photochemistry and Photobiology, 2011, 87, 491-510.	2.5	129
86	Introduction to the Symposiumâ€in Print: Blue light effects. Photochemistry and Photobiology, 2011, 87, 489-490.	2.5	0
87	Peptide Release upon Photoconversion of 2â€Nitrobenzyl Compounds into Nitroso Derivatives. Photochemistry and Photobiology, 2011, 87, 1031-1035.	2.5	7
88	[Fe4S4]- and [Fe3S4]-cluster formation in synthetic peptides. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 1414-1422.	1.0	29
89	The antibiotics roseoflavin and 8-demethyl-8-amino-riboflavin from Streptomyces davawensis are metabolized by human flavokinase and human FAD synthetase. Biochemical Pharmacology, 2011, 82, 1853-1859.	4.4	40
90	Two ground state isoforms and a chromophore $\langle i \rangle \langle b \rangle D \langle b \rangle \langle i \rangle$ -ring photoflip triggering extensive intramolecular changes in a canonical phytochrome. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3842-3847.	7.1	161

#	Article	IF	CITATIONS
91	Lights on: A Switchable Fluorescent Biliprotein. ChemBioChem, 2010, 11, 1649-1652.	2.6	5
92	Purification, crystallization and preliminary X-ray analysis of the dissimilatory sulfite reductase fromDesulfovibrio vulgarisMiyazaki F. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1470-1472.	0.7	0
93	Excited State Processes in 1â€Deazariboflavin Studied by Ultrafast Fluorescence Kinetics. Photochemistry and Photobiology, 2010, 86, 31-38.	2.5	5
94	A Blue Lightâ€inducible Phosphodiesterase Activity in the Cyanobacterium <i>Synechococcus elongatus</i> . Photochemistry and Photobiology, 2010, 86, 606-611.	2.5	44
95	Role of the Protein Cavity in Phytochrome Chromoprotein Assembly and Doubleâ€bond Isomerization: A Comparison with Model Compounds. Photochemistry and Photobiology, 2010, 86, 856-861.	2.5	14
96	Elevated blood markers 1 year before manifestation of malignant glioma. Neuro-Oncology, 2010, 12, 1004-1008.	1.2	16
97	The Role of the Chromophore in the Biological Photoreceptor Phytochrome: An Approach Using Chemically Synthesized Tetrapyrroles. Accounts of Chemical Research, 2010, 43, 485-495.	15.6	23
98	The Switch that Does Not Flip: The Blue-Light Receptor YtvA from Bacillus subtilis Adopts an Elongated Dimer Conformation Independent of the Activation State as Revealed by a Combined AUC and SAXS Study. Journal of Molecular Biology, 2010, 403, 78-87.	4.2	35
99	Phytochrome as Molecular Machine: Revealing Chromophore Action during the Pfr → Pr Photoconversion by Magic-Angle Spinning NMR Spectroscopy. Journal of the American Chemical Society, 2010, 132, 4431-4437.	13.7	55
100	Interdomain signalling in the blue-light sensing and GTP-binding protein YtvA: A mutagenesis study uncovering the importance of specific protein sites. Photochemical and Photobiological Sciences, 2010, 9, 47-56.	2.9	37
101	In Vivo Mutational Analysis of YtvA from Bacillus subtilis. Journal of Biological Chemistry, 2009, 284, 24958-24964.	3.4	64
102	Distribution and Phylogeny of Light-Oxygen-Voltage-Blue-Light-Signaling Proteins in the Three Kingdoms of Life. Journal of Bacteriology, 2009, 191, 7234-7242.	2.2	95
103	A Non-hydrolyzable ATP Derivative Generates a Stable Complex in a Light-inducible Two-component System. Journal of Biological Chemistry, 2009, 284, 33999-34004.	3.4	6
104	Synthesis and characterization of de novo designed peptides modelling the binding sites of [4Fe–4S] clusters in photosystem I. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 995-1008.	1.0	42
105	Enzyme Catalysis "Reilluminated― Angewandte Chemie - International Edition, 2009, 48, 4484-4485.	13.8	3
106	Crystallization and preliminary X-ray analysis of the LOV domain of the blue-light receptor YtvA from <i>Bacillus amyloliquefaciens</i> FZB42. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 853-855.	0.7	7
107	Novel blue lightâ€sensitive proteins from a metagenomic approach. Environmental Microbiology, 2009, 11, 2388-2399.	3.8	36
108	The Photoreactions of Recombinant Phytochrome CphA from the Cyanobacterium <i>Calothrix</i> PCC7601: A Lowâ€Temperature UVâ€"Vis and FTIR Study. Photochemistry and Photobiology, 2009, 85, 239-249.	2.5	15

#	Article	IF	CITATIONS
109	Mutual Exchange of Kinetic Properties by Extended Mutagenesis in Two Short LOV Domain Proteins from <i>Pseudomonas putida</i> . Biochemistry, 2009, 48, 10321-10333.	2.5	55
110	Chromophore Structure of Cyanobacterial Phytochrome Cph1 in the Pr State: Reconciling Structural and Spectroscopic Data by QM/MM Calculations. Biophysical Journal, 2009, 96, 4153-4163.	0.5	66
111	Photophysical Properties of Structurally and Electronically Modified Flavin Derivatives Determined by Spectroscopy and Theoretical Calculations. Journal of Physical Chemistry A, 2009, 113, 9365-9375.	2.5	60
112	Purification, crystallization and preliminary X-ray analysis of adenylylsulfate reductase fromDesulfovibrio vulgarisMiyazaki F. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 1010-1012.	0.7	2
113	Synthesis and Electrochemical Properties of Structurally Modified Flavin Compounds. European Journal of Organic Chemistry, 2008, 2008, 5401-5406.	2.4	17
114	Modelling Lowâ€Potential [Fe ₄ S ₄] Clusters in Proteins. Chemistry and Biodiversity, 2008, 5, 1571-1587.	2.1	20
115	Brain natriuretic peptide correlates with the extent of atrial fibrillation-associated silent brain lesions. Clinical Biochemistry, 2008, 41, 1434-1439.	1.9	15
116	Interactions Between Chromophore and Protein in Phytochrome Identified by Novel Oxaâ€, Thia―and Carbaâ€Chromophores. Photochemistry and Photobiology, 2008, 84, 1109-1117.	2.5	3
117	Femtosecond Kinetics of Photoconversion of the Higher Plant Photoreceptor Phytochrome Carrying Native and Modified Chromophores. Biophysical Journal, 2008, 94, 4370-4382.	0.5	67
118	A Blue Light Inducible Two-Component Signal Transduction System in the Plant Pathogen Pseudomonas syringae pv. tomato. Biophysical Journal, 2008, 94, 897-905.	0.5	53
119	FTIR Study of the Photoinduced Processes of Plant Phytochrome Phya using Isotope-Labeled Bilins and Density Functional Theory Calculations. Biophysical Journal, 2008, 95, 1256-1267.	0.5	30
120	Bacterial bilin- and flavin-binding photoreceptors. Photochemical and Photobiological Sciences, 2008, 7, 1168-1178.	2.9	109
121	New Open-Chain Tetrapyrroles as Chromophores in the Plant Photoreceptor Phytochrome. Journal of the American Chemical Society, 2008, 130, 11303-11311.	13.7	22
122	Electronâ^'Electron Double Resonance-Detected NMR to Measure Metal Hyperfine Interactions: ⁶¹ Ni in the Niâ^'B State of the [NiFe] Hydrogenase of <i>Desulfovibrio vulgaris</i> Miyazaki F. Journal of the American Chemical Society, 2008, 130, 2402-2403.	13.7	33
123	Rhodopsin and 9-Demethyl-retinal Analog. Journal of Biological Chemistry, 2008, 283, 4967-4974.	3.4	19
124	Light-induced chromophore activity and signal transduction in phytochromes observed by ¹³ C and ¹⁵ N magic-angle spinning NMR. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15229-15234.	7.1	85
125	Shedding (blue) light on algal gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7-8.	7.1	21
126	Rhodopsin and 9-demethyl-retinal analog: effect of a partial agonist on displacement of transmembrane helix 6 in class A G protein-coupled receptors. VOLUME 283 (2008) PAGES 4967-4974. Journal of Biological Chemistry, 2008, 283, 16268.	3.4	0

#	Article	IF	CITATIONS
127	Conformational analysis of the blue-light sensing protein YtvA reveals a competitive interface for LOV–LOV dimerization and interdomain interactions. Photochemical and Photobiological Sciences, 2007, 6, 41-49.	2.9	57
128	The Chromophore Structures of the Pr States in Plant and Bacterial Phytochromes. Biophysical Journal, 2007, 93, 2410-2417.	0.5	34
129	Nickel Iron Hydrogenases., 2007,, 279-322.		14
130	Synthesis of Selectively13C-Labelled Bilin Compounds. European Journal of Organic Chemistry, 2007, 2007, 1287-1293.	2.4	13
131	Synthesis of Hetero Atom Modified Pyrromethenones. European Journal of Organic Chemistry, 2007, 2007, 5749-5758.	2.4	9
132	Reporter proteins for in vivo fluorescence without oxygen. Nature Biotechnology, 2007, 25, 443-445.	17.5	336
133	Homologous expression of a bacterial phytochrome. FEBS Journal, 2007, 274, 2088-2098.	4.7	30
134	Phytochromes With Noncovalently Bound Chromophores: The Ability of Apophytochromes to Direct Tetrapyrrole Photoisomerization¶â€. Photochemistry and Photobiology, 2007, 75, 554-559.	2.5	0
135	NTP-binding properties of the blue-light receptor YtvA and effects of the E105L mutation. European Biophysics Journal, 2007, 36, 831-839.	2.2	20
136	Domain interaction in cyanobacterial phytochromes as a prerequisite for spectral integrity. European Biophysics Journal, 2007, 36, 815-821.	2.2	7
137	Effects of noncovalently bound quinones on the ground and triplet states of zinc chlorins in solution and bound to de novo synthesized peptides. Physical Chemistry Chemical Physics, 2006, 8, 5444-5453.	2.8	19
138	Hydrogen Bonding Affects the [NiFe] Active Site of Desulfovibrio vulgaris Miyazaki F Hydrogenase:  A Hyperfine Sublevel Correlation Spectroscopy and Density Functional Theory Study. Journal of Physical Chemistry B, 2006, 110, 8142-8150.	2.6	28
139	15N MAS NMR Studies of Cph1 Phytochrome:Â Chromophore Dynamics and Intramolecular Signal Transduction. Journal of Physical Chemistry B, 2006, 110, 20580-20585.	2.6	51
140	Blue news: NTP binding properties of the blue-light sensitive YtvA protein fromBacillus subtilis. FEBS Letters, 2006, 580, 3818-3822.	2.8	28
141	Sequential and structural analysis of [NiFe]-hydrogenase-maturation proteins from Desulfovibrio vulgaris Miyazaki F. Antonie Van Leeuwenhoek, 2006, 90, 281-290.	1.7	5
142	Long-Term in vitro Growth of Human Insulin-Secreting Insulinoma Cells. Neuroendocrinology, 2006, 83, 123-130.	2.5	17
143	Functional and Biochemical Analysis of the N-terminal Domain of Phytochrome A. Journal of Biological Chemistry, 2006, 281, 34421-34429.	3.4	33
144	Mutational Effects on Protein Structural Changes and Interdomain Interactions in the Blue-light Sensing LOV Protein YtvA. Photochemistry and Photobiology, 2005, 81, 1145.	2.5	33

#	Article	IF	CITATIONS
145	Components of Light-Induced Signal Transduction in Cyanobacteria. , 2005, , 307-314.		O
146	Secretagogin Is a Novel Marker for Neuroendocrine Differentiation. Neuroendocrinology, 2005, 82, 121-138.	2.5	50
147	Initial characterization of a blue-light sensing, phototropin-related protein from Pseudomonas putida: a paradigm for an extended LOV construct. Physical Chemistry Chemical Physics, 2005, 7, 2804.	2.8	48
148	Tryptophan Fluorescence in the Bacillus subtilis Phototropin-related Protein YtvA as a Marker of Interdomain Interaction \hat{A}_{\P} . Photochemistry and Photobiology, 2004, 80, 150.	2.5	16
149	Chromophore selectivity in bacterial phytochromes. FEBS Journal, 2004, 271, 1117-1126.	0.2	35
150	Functional variations among LOV domains as revealed by FT-IR difference spectroscopy. Photochemical and Photobiological Sciences, 2004, 3, 575-579.	2.9	59
151	Crystal Structures of Two Cyanobacterial Response Regulators in Apo- and Phosphorylated Form Reveal a Novel Dimerization Motif of Phytochrome-Associated Response Regulators. Biophysical Journal, 2004, 87, 476-487.	0.5	22
152	Tryptophan Fluorescence in the <i>Bacillus subtilis</i> Phototropinâ€related Protein YtvA as a Marker of Interdomain Interaction [¶] . Photochemistry and Photobiology, 2004, 80, 150-153.	2.5	1
153	Crossing the borders: archaeal rhodopsins go bacterial. Trends in Microbiology, 2003, 11, 405-407.	7.7	10
154	Listening to the blue: the time-resolved thermodynamics of the bacterial blue-light receptor YtvA and its isolated LOV domain. Photochemical and Photobiological Sciences, 2003, 2, 759-766.	2.9	94
155	Heterologous Expression and Characterization of Recombinant Phytochrome from the Green Alga Mougeotia scalaris¶. Photochemistry and Photobiology, 2002, 76, 457.	2.5	17
156	Use of retinal analogues for the study of visual pigment function. Methods in Enzymology, 2002, 343, 29-48.	1.0	13
157	First Evidence for Phototropin-Related Blue-Light Receptors in Prokaryotes. Biophysical Journal, 2002, 82, 2627-2634.	0.5	256
158	Two independent, light-sensing two-component systems in a filamentous cyanobacterium. FEBS Journal, 2002, 269, 2662-2671.	0.2	54
159	Phytochromes With Noncovalently Bound Chromophores: The Ability of Apophytochromes to Direct Tetrapyrrole Photoisomerization¶â€. Photochemistry and Photobiology, 2002, 75, 554.	2.5	26
160	Photoreceptor Current and Photoorientation in Chlamydomonas Mediated by 9-Demethylchlamyrhodopsin. Biophysical Journal, 2001, 81, 2897-2907.	0.5	5
161	FTIR Studies of Phytochrome Photoreactions Reveal the CO Bands of the Chromophore: Consequences for Its Protonation States, Conformation, and Protein Interactionâ€. Biochemistry, 2001, 40, 14952-14959.	2.5	87
162	Phosphorylation of proteins in the light-dependent signalling pathway of a filamentous cyanobacterium. FEBS Journal, 2001, 268, 3383-3389.	0.2	45

#	Article	IF	Citations
163	Analysis of the Topology of the Chromophore Binding Pocket of Phytochromes by Variation of the Chromophore Substitution Pattern. Angewandte Chemie - International Edition, 2001, 40, 1048-1050.	13.8	20
164	The Light Shall Show the Wayâ€"Or: The Conformational Changes of the Retinal Chromophore in Rhodopsin upon Light Activation. Angewandte Chemie - International Edition, 2001, 40, 2977-2981.	13.8	18
165	Recombinant Phytochrome A in Yeast Differs by its Spectroscopic and Photochemical Properties from the Major phyAâ \in ² and is Close to the Minor phyAâ \in ³ : Evidence for Posttranslational Modification of the Pigment in Plants¶. Photochemistry and Photobiology, 2001, 73, 692.	2.5	5
166	Model Studies of Phytochrome Photochromism: Protein-Mediated Photoisomerization of a Linear Tetrapyrrole in the Absence of Covalent Bonding. Angewandte Chemie - International Edition, 2000, 39, 3269-3271.	13.8	17
167	Functional expression of a locust visual pigment in transgenic Drosophila melanogaster. FEBS Journal, 2000, 267, 1917-1922.	0.2	7
168	Cloning and Expression of Secretagogin, a Novel Neuroendocrine- and Pancreatic Islet of Langerhans-specific Ca2+-binding Protein. Journal of Biological Chemistry, 2000, 275, 24740-24751.	3.4	150
169	Signaling States of Rhodopsin. Journal of Biological Chemistry, 2000, 275, 19713-19718.	3.4	73
170	Time-resolved Thermodynamic Changes Photoinduced in 5,12-trans-locked Bacteriorhodopsin. Evidence that Retinal Isomerization is Required for Protein Activation¶. Photochemistry and Photobiology, 2000, 72, 590.	2.5	22
171	Aspartate 75 Mutation in Sensory Rhodopsin II from Natronobacterium pharaonis Does Not Influence the Production of the K-Like Intermediate, but Strongly Affects Its Relaxation Pathway. Biophysical Journal, 2000, 78, 2581-2589.	0.5	30
172	Refinement of the Geometry of the Retinal Binding Pocket in Dark-Adapted Bacteriorhodopsin by Heteronuclear Solid-State NMR Distance Measurements. Biochemistry, 2000, 39, 10066-10071.	2.5	24
173	The Photoreactions of Recombinant Phytochrome from the Cyanobacterium Synechocystis: A Low-Temperature UV-Vis and FT-IR Spectroscopic Study. Photochemistry and Photobiology, 2000, 71, 655-661.	2.5	3
174	The Photoreactions of Recombinant Phytochrome from the Cyanobacterium Synechocystis: A Low-Temperature UV–Vis and FT-IR Spectroscopic Study. Photochemistry and Photobiology, 2000, 71, 655.	2.5	41
175	Differential effects of mutations in the chromophore pocket of recombinant phytochrome on chromoprotein assembly and Pr-to-Pfr photoconversion. FEBS Journal, 1999, 266, 201-208.	0.2	23
176	Time-Resolved Absorption and Photothermal Measurements with Recombinant Sensory Rhodopsin II from Natronobacterium pharaonis. Biophysical Journal, 1999, 77, 3277-3286.	0.5	38
177	Time-Resolved Absorption and Photothermal Measurements with Sensory Rhodopsin I from Halobacterium salinarum. Biophysical Journal, 1999, 76, 2183-2191.	0.5	30
178	The Complexity of the P _r to P _{fr} Phototransformation Kinetics Is an Intrinsic Property of Native Phytochrome*. Photochemistry and Photobiology, 1998, 68, 754-761.	2.5	13
179	Recombinant Phytochrome of the Moss Ceratodon purpureus: Heterologous Expression and Kinetic Analysis of Pr→ PfrConversion. Photochemistry and Photobiology, 1998, 68, 857-863.	2.5	20
180	A Novel Chromophore Selectively Modifies the Spectral Properties of One of the Two Stable States of the Plant Photoreceptor Phytochrome. Angewandte Chemie - International Edition, 1998, 37, 1843-1846.	13.8	31

#	Article	IF	Citations
181	The Chromophore Induces a Correct Folding of the Polypeptide Chain of Bacteriorhodopsin. Biochemistry, 1998, 37, 8227-8232.	2.5	20
182	Chromophore Incorporation, Pr to Pfr Kinetics, and Pfr Thermal Reversion of Recombinant N-Terminal Fragments of Phytochrome A and B Chromoproteins. Biochemistry, 1998, 37, 9983-9990.	2.5	36
183	Volume and Enthalpy Changes upon Photoexcitation of Bovine Rhodopsin Derived from Optoacoustic Studies by Using an Equilibrium between Bathorhodopsin and Blueâ€5hifted Intermediate. Israel Journal of Chemistry, 1998, 38, 231-236.	2.3	20
184	The Complexity of the Pr to Pfr Phototransformation Kinetics Is an Intrinsic Property of Native Phytochrome. Photochemistry and Photobiology, 1998, 68, 754.	2.5	53
185	Recombinant Phytochrome of the Moss Ceratodon purpureus: Heterologous Expression and Kinetic Analysis of Pr ↠Pfr Conversion. Photochemistry and Photobiology, 1998, 68, 857.	2.5	3
186	Characterization of recombinant phytochrome from the cyanobacterium Synechocystis. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 11792-11797.	7.1	177
187	Recombinant Type A and B Phytochromes from Potato. Transient Absorption Spectroscopy. Biochemistry, 1997, 36, 103-111.	2.5	57
188	Role of the Triplet State in Retinal Photoisomerization As Studied by Laser-Induced Optoacoustic Spectroscopyâ€. Journal of Physical Chemistry B, 1997, 101, 7620-7627.	2.6	15
189	Raman Spectroscopic and Light-Induced Kinetic Characterization of a Recombinant Phytochrome of the Cyanobacterium Synechocystis. Biochemistry, 1997, 36, 13389-13395.	2.5	81
190	Primary Structure of Locust Opsins: a Speculative Model Which May Account for Ultraviolet Wavelength Light Detection. Vision Research, 1997, 37, 495-503.	1.4	21
191	Effect of chromophore exchange on the resonance Raman spectra of recombinant phytochromes. FEBS Letters, 1997, 414, 23-26.	2.8	30
192	A prokaryotic phytochrome. Nature, 1997, 386, 663-663.	27.8	325
193	Steric Hindrance between Chromophore Substituents as the Driving Force of Rhodopsin Photoisomerization: 10-Methyl-13-Demethyl Retinal Containing Rhodopsin. Photochemistry and Photobiology, 1997, 65, 181-186.	2.5	27
194	Largeâ€scale Generation of Affinityâ€purified Recombinant Phytochrome Chromopeptide. Photochemistry and Photobiology, 1997, 66, 710-715.	2.5	41
195	Raman spectroscopic analysis of isomers of biliverdin dimethyl ester. Journal of Pharmaceutical and Biomedical Analysis, 1997, 15, 1319-1324.	2.8	16
196	Merocyanines as Extremely Bathochromically Absorbing Chromophores in the Halobacterial Membrane Protein Bacteriorhodopsin. Angewandte Chemie International Edition in English, 1997, 36, 1630-1633.	4.4	20
197	Regioselective Deuteration and Resonance Raman Spectroscopic Characterization of Biliverdin and Phycocyanobilin. Chemistry - A European Journal, 1997, 3, 363-367.	3.3	14
198	Conversion of energy in halobacteria: ATP synthesis and phototaxis. Archives of Microbiology, 1996, 166, 1-11.	2.2	34

#	Article	IF	Citations
199	Influence of Expression System on Chromophore Binding and Preservation of Spectral Properties in Recombinant Phytochrome A. FEBS Journal, 1996, 236, 978-983.	0.2	38
200	Influence of a steric hindrance in the chromophore of rhodopsin on the quantum yield of the primary photochemistry. Journal of Photochemistry and Photobiology B: Biology, 1996, 33, 83-86.	3.8	14
201	Chromophore-protein interaction controls the complexity of the phytochrome photocycle. Journal of Photochemistry and Photobiology B: Biology, 1996, 34, 73-77.	3.8	37
202	INVERTEBRATE VISUAL PIGMENTS. Photochemistry and Photobiology, 1995, 62, 1-16.	2.5	88
203	Vibrational analysis of biliverdin IXα dimethyl ester conformers. Journal of Molecular Structure, 1995, 348, 225-228.	3.6	12
204	Circular dichroism spectroscopy of the retinal chromophore during the photocycle of bacteriorhodopsin and its D96N mutant derivative. Journal of Photochemistry and Photobiology B: Biology, 1995, 31, 139-144.	3.8	6
205	Die Funktion biologischer photosensorischer Pigmente. , 1995, , 21-36.		0
206	Expression of phytochrome apoprotein from Avena sativa in Escherichia coli and formation of photoactive chromoproteins by assembly with phycocyanobilin. FEBS Journal, 1994, 223, 69-77.	0.2	35
207	A possible protein motion during the bacteriorhodopsin photocycle detected by combined photothermal beam deflection and optical detection. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1185, 92-96.	1.0	10
208	The primary structure of mantid opsin. Gene, 1994, 143, 227-231.	2.2	26
209	Picosecond time-resolved fluorescence spectroscopy of 13-demethylretinal bacteriorhodopsin. Chemical Physics Letters, 1992, 190, 298-304.	2.6	5
210	The influence of the 13-methyl group of the retinal on the photoreaction of rhodopsin revealed by FTIR difference spectroscopy. European Biophysics Journal, 1990, 18, 295.	2.2	31
211	Reversed picosecond charge displacement from the photoproduct K of bacteriorhodopsin demonstrated photoelectrically. Chemical Physics Letters, 1989, 158, 515-518.	2.6	30
212	Methoxyretinals in bacteriorhodopsin. Absorption maxima, cis-trans isomerization and retinal protein interaction. FEBS Journal, 1988, 176, 641-648.	0.2	9
213	3-Hydroxy Retinal, a New Chromophore Identified in Insect Eyes: HPLC Separation and NMR Spectroscopic Identification of the Oxime Forms. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1988, 43, 473-475.	1.4	2
214	Electrogenic transport properties of bacteriorhodopsin containing chemically modified retinal analogues. Biochimica Et Biophysica Acta - Bioenergetics, 1987, 893, 60-68.	1.0	11
215	Substituents at the C13 Position of Retinal and Their Influence on the Function of Bacteriorhodopsin. Biophysical Journal, 1985, 47, 349-355.	0.5	23
216	Sterically Fixed Retinal-Analogue Prevents Proton-Pumping Activity in Bacteriorhodopsin. Angewandte Chemie International Edition in English, 1984, 23, 81-82.	4.4	20

#	Article	IF	CITATIONS
217	[70] Identification of cis/trans isomers of retinal analogs by high-performance proton NMR method. Methods in Enzymology, 1982, 88, 546-552.	1.0	1
218	On the photoisomerisation of 13-desmethyl-retinal. Tetrahedron Letters, 1980, 21, 347-350.	1.4	29