Suzanne Lenhart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5697265/publications.pdf

Version: 2024-02-01

236925 197818 3,974 131 25 49 citations h-index g-index papers 139 139 139 2762 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Control of a consumerâ€resource agentâ€based model using partial differential equation approximation. Optimal Control Applications and Methods, 2022, 43, 178-197.	2.1	O
2	Optimal control of continuous systems with impulse controls. Optimal Control Applications and Methods, 2022, 43, 588-588.	2.1	0
3	Modeling COVIDâ€19: Forecasting and analyzing the dynamics of the outbreaks in Hubei and Turkey. Mathematical Methods in the Applied Sciences, 2022, 45, 6481-6494.	2.3	12
4	Geographic disparities and predictors of COVID-19 hospitalization risks in the St. Louis Area, Missouri (USA). BMC Public Health, 2022, 22, 321.	2.9	6
5	A vaccination model for COVID-19 in Gauteng, South Africa. Infectious Disease Modelling, 2022, 7, 333-345.	1.9	9
6	Mathematical modeling of the influence of cultural practices on cholera infections in Cameroon. Mathematical Biosciences and Engineering, 2021, 18, 8374-8391.	1.9	4
7	Political economy of renewable resource federalism. Ecological Applications, 2021, 31, e02276.	3.8	4
8	AN AGE STRUCTURE MODEL WITH IMPULSE ACTIONS FOR LEPTOSPIROSIS IN LIVESTOCK CATTLE. Journal of Biological Systems, 2021, 29, 75-105.	1.4	3
9	A Mathematical Model of Contact Tracing during the 2014–2016 West African Ebola Outbreak. Mathematics, 2021, 9, 608.	2.2	9
10	La Crosse virus spread within the mosquito population in Knox County, TN. PLoS ONE, 2021, 16, e0249811.	2.5	3
11	Modeling the Effect of HIV/AIDS Stigma on HIV Infection Dynamics in Kenya. Bulletin of Mathematical Biology, 2021, 83, 55.	1.9	4
12	Optimal control of harvest timing in discrete population models. Natural Resource Modelling, 2021, 34, e12321.	2.0	5
13	A new mathematical model studying imperfect vaccination: Optimal control analysis. Journal of Mathematical Analysis and Applications, 2021, 500, 125132.	1.0	7
14	A Data-Driven Mathematical Model of the Heroin and Fentanyl Epidemic in Tennessee. Bulletin of Mathematical Biology, 2021, 83, 97.	1.9	4
15	Towards Building a Sustainable Future: Positioning Ecological Modelling for Impact in Ecosystems Management. Bulletin of Mathematical Biology, 2021, 83, 107.	1.9	14
16	Mathematically modeling the effect of touch frequency on the environmental transmission of Clostridioides difficile in healthcare settings. Mathematical Biosciences, 2021, 340, 108666.	1.9	1
17	Governance structure affects transboundary disease management under alternative objectives. BMC Public Health, 2021, 21, 1782.	2.9	1
18	Evidence for Multiple Transmission Routes for Pseudorabies in Wild Hogs. Mathematics of Planet Earth, 2021, , 37-56.	0.1	0

#	Article	IF	CITATIONS
19	Optimal sustainable fishery management of the Black Sea anchovy with food chain modeling framework. Natural Resource Modelling, 2020, 33, .	2.0	7
20	Comparing intervention strategies for reducing Clostridioides difficile transmission in acute healthcare settings: an agent-based modeling study. BMC Infectious Diseases, 2020, 20, 799.	2.9	13
21	Connecting with Teachers through Modeling in Mathematical Biology. Bulletin of Mathematical Biology, 2020, 82, 98.	1.9	4
22	Controlled Stochastic Partial Differential Equations for Rabbits on a Grassland. Acta Mathematicae Applicatae Sinica, 2020, 36, 262-282.	0.7	4
23	EBOLA OUTBREAKS AND INTERNATIONAL TRAVEL RESTRICTIONS: CASE STUDIES OF CENTRAL AND WEST AFRICA REGIONS. Journal of Biological Systems, 2020, 28, 431-452.	1.4	5
24	Development of the BioCalculus Assessment (BCA). CBE Life Sciences Education, 2020, 19, ar6.	2.3	5
25	Host density and habitat structure influence host contact rates and Batrachochytrium salamandrivorans transmission. Scientific Reports, 2020, 10, 5584.	3.3	21
26	OPTIMAL RESOURCE ALLOCATION FOR A DIFFUSIVE POPULATION MODEL. Journal of Biological Systems, 2020, 28, 945-976.	1.4	5
27	Optimal Control of a PDE Model of an Invasive Species in a River. Mathematics, 2019, 7, 975.	2.2	0
28	Optimal control of vaccination in a vector-borne reaction–diffusion model applied to Zika virus. Journal of Mathematical Biology, 2019, 79, 1077-1104.	1.9	42
29	Optimal control with MANF treatment of photoreceptor degeneration. Mathematical Medicine and Biology, 2019, 37, 1-21.	1.2	6
30	Modeling the average population of La Crosse vectors in Knox County, Tennessee. Letters in Biomathematics, 2019, 6, 20-31.	0.1	0
31	Marine reserves and optimal dynamic harvesting when fishing damages habitat. Theoretical Ecology, 2019, 12, 131-144.	1.0	7
32	A Risk-Structured Mathematical Model of Buruli Ulcer Disease in Ghana. Mathematics of Planet Earth, 2019, , 109-128.	0.1	6
33	Balancing Prevention and Suppression of Forest Fires with Fuel Management as a Stock. The IMA Volumes in Mathematics and Its Applications, 2019, , 235-259.	0.5	0
34	Assessing the economic tradeâ€offs between prevention and suppression of forest fires. Natural Resource Modelling, 2018, 31, .	2.0	7
35	Modeling a single season of (i) Aedes albopictus (i) populations based on host-seeking data in response to temperature and precipitation in eastern Tennessee. Journal of Vector Ecology, 2018, 43, 138-147.	1.0	15
36	Modeling the macrophage-anthrax spore interaction: Implications for early host-pathogen interactions. Mathematical Biosciences, 2018, 305, 18-28.	1.9	7

#	Article	IF	CITATIONS
37	Optimal control of vaccination rate in an epidemiological model of Clostridium difficile transmission. Journal of Mathematical Biology, 2017, 75, 1693-1713.	1.9	10
38	Immune therapeutic strategies using optimal controls with L 1 and L 2 type objectives. Mathematical Biosciences, 2017, 290, 9-21.	1.9	14
39	Evaluating wild hog preferences to guide control strategies in the Great Smoky Mountains National Park. Natural Resource Modelling, 2017, 30, .	2.0	О
40	Modeling the role of public health education in Ebola virus disease outbreaks in Sudan. Infectious Disease Modelling, 2017, 2, 323-340.	1.9	26
41	Optimal Culling and Biocontrol in a Predator–Prey Model. Bulletin of Mathematical Biology, 2017, 79, 88-116.	1.9	8
42	Antimicrobial Stewardship and Environmental Decontamination for the Control of Clostridium difficile Transmission in Healthcare Settings. Bulletin of Mathematical Biology, 2017, 79, 36-62.	1.9	9
43	Management strategies in a malaria model combining human and transmission-blocking vaccines. Discrete and Continuous Dynamical Systems - Series B, 2017, 22, 977-1000.	0.9	6
44	Advection control in parabolic PDE systems for competitive populations. Discrete and Continuous Dynamical Systems - Series B, 2017, 22, 1049-1072.	0.9	2
45	Modeling environmental transmission of MAP infection in dairy cows. Mathematical Biosciences and Engineering, 2017, 14, 1001-1017.	1.9	5
46	Optimal Control of Drug Therapy in a Hepatitis B Model. Applied Sciences (Switzerland), 2016, 6, 219.	2.5	23
47	OPTIMAL CONTROL APPLIED IN AN ANTHRAX EPIZOOTIC MODEL. Journal of Biological Systems, 2016, 24, 495-517.	1.4	11
48	Modeling Interventions in the Owned Cat Population to Decrease Numbers, Knox County, TN. Journal of Applied Animal Welfare Science, 2016, 19, 396-407.	1.0	5
49	Optimal Control of Vaccination in an Age-Structured Cholera Model. , 2016, , 221-248.		8
50	OPTIMAL FISH HARVESTING FOR A POPULATION MODELED BY A NONLINEAR PARABOLIC PARTIAL DIFFERENTIAL EQUATION. Natural Resource Modelling, 2016, 29, 36-70.	2.0	16
51	A dynamical model for bark beetle outbreaks. Journal of Theoretical Biology, 2016, 407, 25-37.	1.7	13
52	Optimal harvesting strategies for timber and non-timber forest products in tropical ecosystems. Theoretical Ecology, 2016, 9, 287-297.	1.0	22
53	A METAPOPULATION MODEL FOR FERAL HOGS IN GREAT SMOKY MOUNTAINS NATIONAL PARK. Natural Resource Modelling, 2016, 29, 71-97.	2.0	5
54	The impact of spatial arrangements on epidemic disease dynamics and intervention strategies. Journal of Biological Dynamics, 2016, 10, 222-249.	1.7	29

#	Article	IF	CITATIONS
55	Optimal Controls for Stochastic Partial Differential Equations with an Application in Population Modeling. SIAM Journal on Control and Optimization, 2016, 54, 495-535.	2.1	14
56	HIV–TB co-infection treatment: Modeling and optimal control theory perspectives. Journal of Computational and Applied Mathematics, 2016, 307, 143-161.	2.0	39
57	The Dynamics of HPV Infection and Cervical Cancer Cells. Bulletin of Mathematical Biology, 2016, 78, 4-20.	1.9	27
58	ON THE BIOECONOMICS OF MARINE RESERVES WHEN DISPERSAL EVOLVES. Natural Resource Modelling, 2015, 28, 456-474.	2.0	4
59	An immuno-epidemiological model for Johne's disease in cattle. Veterinary Research, 2015, 46, 69.	3.0	21
60	Agent-based model for Johne's disease dynamics in a dairy herd. Veterinary Research, 2015, 46, 68.	3.0	35
61	AN INDIVIDUALâ€BASED MODEL FOR FERAL HOGS IN GREAT SMOKY MOUNTAINS NATIONAL PARK. Natural Resource Modelling, 2015, 28, 18-36.	2.0	14
62	Optimal control of integrodifference equations in a pest-pathogen system. Discrete and Continuous Dynamical Systems - Series B, 2015, 20, 1759-1783.	0.9	4
63	Climate, environmental and socio-economic change: weighing up the balance in vector-borne disease transmission. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130551.	4.0	215
64	MODELING THE EFFECT OF VACCINES ON CHOLERA TRANSMISSION. Journal of Biological Systems, 2015, 23, 323-338.	1.4	4
65	Controlling synchrony in a network of Kuramoto oscillators with time-varying coupling. Physica D: Nonlinear Phenomena, 2015, 301-302, 36-47.	2.8	9
66	Optimal control of continuous systems with impulse controls. Optimal Control Applications and Methods, 2015, 36, 535-549.	2.1	18
67	Transmission dynamics of West Nile virus in mosquitoes and corvids and non-corvids. Journal of Mathematical Biology, 2014, 68, 1553-1582.	1.9	53
68	Preface on the special issue of Discrete and Continuous Dynamical Systems- Series B in honor of Chris Cosner on the occasion of his 60th birthday. Discrete and Continuous Dynamical Systems - Series B, 2014, 19, i-ii.	0.9	0
69	Optimal Control in Individual-Based Models: Implications from Aggregated Methods. American Naturalist, 2013, 181, 64-77.	2.1	13
70	Modeling effective transmission pathways and control of the world's most successful parasite. Theoretical Population Biology, 2013, 86, 50-61.	1.1	19
71	Study on the order of events in optimal control of a harvesting problem modeled by integrodifference equations. Evolution Equations and Control Theory, 2013, 2, 749-769.	1.3	1
72	OPTIMAL CONTROL OF THE SPREAD OF MALARIA SUPERINFECTIVITY. Journal of Biological Systems, 2013, 21, 1340002.	1.4	26

#	Article	IF	Citations
73	Illustrating Optimal Control Applications with Discrete and Continuous Features. Fields Institute Communications, 2013, , 209-238.	1.3	3
74	MODELING FOR COST ANALYSIS OF JOHNE'S DISEASE CONTROL BASED ON EVELISA TESTING. Journal of Biological Systems, 2013, 21, 1340010.	1.4	13
75	Optimal control of integrodifference equations with growth-harvesting-dispersal order. Discrete and Continuous Dynamical Systems - Series B, 2012, 17, 2281-2298.	0.9	5
76	Order of events matter: comparing discrete models for optimal control of species augmentation. Journal of Biological Dynamics, 2012, 6, 31-49.	1.7	19
77	Using optimal control theory to identify network structures that foster synchrony. Physica D: Nonlinear Phenomena, 2012, 241, 574-582.	2.8	3
78	Optimal control of advective direction in reaction-diffusion population models. Evolution Equations and Control Theory, 2012, 1, 81-107.	1.3	7
79	A mathematical model for within-host Toxoplasma gondii invasion dynamics. Mathematical Biosciences and Engineering, 2012, 9, 647-662.	1.9	11
80	An age-structured model for the spread of epidemic cholera: Analysis and simulation. Nonlinear Analysis: Real World Applications, 2011, 12, 3483-3498.	1.7	36
81	Mathematical analysis of a model for the transmission dynamics of bovine tuberculosis. Mathematical Methods in the Applied Sciences, 2011, 34, 1873-1887.	2.3	16
82	Optimal vaccine distribution in a spatiotemporal epidemic model with an application to rabies and raccoons. Journal of Mathematical Analysis and Applications, 2011, 378, 603-619.	1.0	38
83	Use of optimal control models to predict treatment time for managing tick-borne disease. Journal of Biological Dynamics, 2011, 5, 517-530.	1.7	20
84	Backward Bifurcation and Optimal Control in Transmission Dynamics of West Nile Virus. Bulletin of Mathematical Biology, 2010, 72, 1006-1028.	1.9	133
85	Modeling Optimal Intervention Strategies for Cholera. Bulletin of Mathematical Biology, 2010, 72, 2004-2018.	1.9	184
86	Preparing the "New―Biologist of the Future: Student Research at the Interface of Mathematics and Biology. CBE Life Sciences Education, 2010, 9, 311-315.	2.3	6
87	Optimal control of a rabies epidemic model with a birth pulse. Journal of Biological Dynamics, 2010, 4, 43-58.	1.7	22
88	OPTIMAL HARVESTING OF A SPATIALLY EXPLICIT FISHERY MODEL. Natural Resource Modelling, 2009, 22, 173-211.	2.0	20
89	OPTIMAL DYNAMIC HARVEST OF A MOBILE RENEWABLE RESOURCE. Natural Resource Modelling, 2009, 22, 322-343.	2.0	17
90	Optimal Control of Gypsy Moth Populations. Bulletin of Mathematical Biology, 2008, 70, 398-411.	1.9	10

#	Article	IF	CITATIONS
91	CONTROL OF A METAPOPULATION HARVESTING MODEL FOR BLACK BEARS. Natural Resource Modelling, 2008, 18, 307-321.	2.0	13
92	Optimal Control of a Convective Boundary Condition in a Thermistor Problem. SIAM Journal on Control and Optimization, 2008, 47, 20-39.	2.1	6
93	Optimal control applied to a model for species augmentation. Mathematical Biosciences and Engineering, 2008, 5, 669-680.	1.9	15
94	Optimal control applied to a thoraco-abdominal CPR model. Mathematical Medicine and Biology, 2008, 25, 157-170.	1.2	14
95	Optimal control of vaccine distribution in a rabies metapopulation model. Mathematical Biosciences and Engineering, 2008, 5, 219-238.	1.9	68
96	Optimal harvesting during an invasion of a sublethal plant pathogen. Environment and Development Economics, 2007, 12, 673-686.	1.5	11
97	Rabies in raccoons: optimal control for a discrete time model on a spatial grid. Journal of Biological Dynamics, 2007, 1, 379-393.	1.7	23
98	Optimal control of treatment in a mathematical model of chronic myelogenous leukemia. Mathematical Biosciences, 2007, 210, 143-156.	1.9	97
99	Optimal control applied to native–invasive population dynamics. Journal of Biological Dynamics, 2007, 1, 413-426.	1.7	26
100	Harvesting control in an integrodifference population model with concave growth term. Nonlinear Analysis: Hybrid Systems, 2007, 1, 417-429.	3.5	13
101	Optimal control for management of an invasive plant species. Mathematical Biosciences and Engineering, 2007, 4, 101-112.	1.9	32
102	Optimal Strategy for Cardiopulmonary Resuscitation with Continuous Chest Compression. Academic Emergency Medicine, 2006, 13, 715-721.	1.8	20
103	Optimal Harvesting in an Age-Structured Predator–Prey Model. Applied Mathematics and Optimization, 2006, 54, 1-15.	1.6	47
104	Optimal harvesting in an integrodifference population model. Optimal Control Applications and Methods, 2006, 27, 61-75.	2.1	10
105	OPTIMAL CONTROL THEORY APPLIED TO A DIFFERENCE EQUATION MODEL FOR CARDIOPULMONARY RESUSCITATION. Mathematical Models and Methods in Applied Sciences, 2005, 15, 1519-1531.	3.3	18
106	SOLVING A CROP PROBLEM BY AN OPTIMAL CONTROL METHOD. Natural Resource Modelling, 2005, 18, 323-346.	2.0	3
107	Optimal control of the obstacle in semilinear variational inequalities. Positivity, 2004, 8, 229-242.	0.7	17
108	Optimal control of a competitive system with age-structure. Journal of Mathematical Analysis and Applications, 2004, 291, 526-537.	1.0	58

#	Article	IF	Citations
109	The mathematics of marriage: dynamic linear modelsby John M.BGottman, James D.BMurray, Catherine C.BSwanson, Rebecca Tyson, and KristinBR. Swanson,B2002. Bradford Book, Massachusetts Institute of Technology Press, pp.B403, \$42.95, ISBN 0-262-07226-2. Bulletin of Mathematical Biology, 2004, 66, 1459-1461.	1.9	0
110	Optimal Control of Bilateral Obstacle Problems. SIAM Journal on Control and Optimization, 2004, 43, 240-255.	2.1	30
111	Identification problem for the wave equation with Neumann data input and Dirichlet data observations. Nonlinear Analysis: Theory, Methods & Applications, 2003, 52, 1777-1795.	1.1	7
112	Solving the dynamical inverse problem for the Schr \tilde{A} ¶dinger equation by the boundary control method. Inverse Problems, 2002, 18, 349-361.	2.0	36
113	Optimal Control of the Obstacle for a Parabolic Variational Inequality. Journal of Mathematical Analysis and Applications, 2002, 268, 602-614.	1.0	17
114	An Obstacle Control Problem with a Source Term. Applied Mathematics and Optimization, 2002, 47, 79-95.	1.6	26
115	Optimal control of treatments in a two-strain tuberculosis model. Discrete and Continuous Dynamical Systems - Series B, 2002, 2, 473-482.	0.9	181
116	RECOVERING THE POTENTIAL IN THE SCHR×DINGER EQUATION FROM THE N-D MAP. , 2002, , .		0
117	Application of optimal control theory to bioremediation. Journal of Computational and Applied Mathematics, 2000, 114, 81-102.	2.0	9
118	Bilinear Optimal Control of the Velocity Term in a Kirchhoff Plate Equation. Journal of Mathematical Analysis and Applications, 1999, 238, 451-467.	1.0	51
119	Optimal control of boundary habitat hostility for interacting species. Mathematical Methods in the Applied Sciences, 1999, 22, 1061-1077.	2.3	36
120	AN OPTIMAL CONTROL MODEL FOR THE SURFACE RUNOFF CONTAMINATION OF A LARGE RIVER BASIN. Natural Resource Modelling, 1999, 12, 175-195.	2.0	7
121	RKH Space Methods for Low Level Monitoring and Control of Nonlinear Systems II. A Vector-Case Example: The Lorenz System. Mathematical Models and Methods in Applied Sciences, 1997, 07, 823-845.	3.3	6
122	Optimal control of the chemotherapy of HIV. Journal of Mathematical Biology, 1997, 35, 775-792.	1.9	385
123	Short Communication: Bilinear optimal control of a Kirchoff plate to a desired profile. Optimal Control Applications and Methods, 1997, 18, 217-226.	2.1	7
124	RKH SPACE METHODS FOR LOW LEVEL MONITORING AND CONTROL OF NONLINEAR SYSTEMS. Mathematical Models and Methods in Applied Sciences, 1996, 06, 77-96.	3.3	6
125	OPTIMAL CONTROL OF A CONVECTIVE-DIFFUSIVE FLUID PROBLEM. Mathematical Models and Methods in Applied Sciences, 1995, 05, 225-237.	3.3	51
126	Integro-differential equations associated with optimal stopping time of a piecewise-deterministic process. Stochastics, 1985, 15, 183-207.	0.6	30

SUZANNE LENHART

#	ARTICLE	IF	CITATIONS
127	Bellman equation with integro-differential operators. , 1982, , .		0
128	Integro-differential operators associated with diffusion processes with jumps. Applied Mathematics and Optimization, 1982, 9, 177-191.	1.6	18
129	The parabolic bellman equation. Nonlinear Analysis: Theory, Methods & Applications, 1981, 5, 765-773.	1.1	11
130	Optimal Control Applied to Biological Models. , 0, , .		954
131	Stability analysis of rabies model with vaccination effect and culling in dogs. Applied Mathematical Sciences, 0, 9, 3805-3817.	0.1	9