Yuan Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5696989/publications.pdf

Version: 2024-02-01

516710 477307 37 901 16 29 citations h-index g-index papers 37 37 37 507 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	A low-velocity layer atop the mantle transition zone beneath the western Central Asian Orogenic Belt: Upper mantle melting induced by ancient slab subduction. Earth and Planetary Science Letters, 2022, 578, 117287.	4.4	10
2	Advances in the deep tectonics and seismic anisotropy of the Lijiang-Xiaojinhe fault zone in the Sichuan-Yunnan Block, Southwestern China. Earthquake Research Advances, 2022, 2, 100116.	2.2	3
3	A Partial Molten Lowâ€Velocity Layer Atop the Mantle Transition Zone Beneath the Western Junggar: Implication for the Formation of Subductionâ€Induced Subâ€Slab Mantle Plume. Geochemistry, Geophysics, Geosystems, 2022, 23, .	2.5	3
4	Velocity Anomalies Around the Mantle Transition Zone Beneath the Qiangtang Terrane, Central Tibetan Plateau From Triplicated P Waveforms. Earth and Space Science, 2022, 9, .	2.6	6
5	Anisotropic zoning in the upper crust of the Tianshan Tectonic Belt. Science China Earth Sciences, 2021, 64, 651-666.	5.2	4
6	Spatial Variations of Upper Crustal Anisotropy Along the San Jacinto Fault Zone in Southern California: Constraints From Shear Wave Splitting Analysis. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020876.	3.4	5
7	Seismic Structure Beneath the Tibetan Plateau From Iterative Finiteâ€Frequency Tomography Based on ChinArray: New Insights Into the Indoâ€Asian Collision. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018344.	3.4	24
8	Crustal thicknesses and Poisson's ratios beneath the Chuxiong-Simao Basin in the Southeast Margin of the Tibetan Plateau. Earth and Planetary Physics, 2019, 3, 69-84.	1.1	16
9	Spatiotemporal Variation of Crustal Anisotropy in the Source Area of the 2004 Niigata, Japan Earthquake. Bulletin of the Seismological Society of America, 2019, 109, 1331-1342.	2.3	3
10	Preliminary analysis of crustal shearâ€wave splitting in the Sanjiang lateral collision zone of the southeast margin of the Tibetan Plateau and its tectonic implications. Geophysical Prospecting, 2019, 67, 2432-2449.	1.9	18
11	Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data. Earth and Planetary Physics, 2019, 3, 53-61.	1.1	23
12	Preliminary seismic hazard assessment for the proposed Bohai Strait subsea tunnel based on scenario earthquake studies. Journal of Applied Geophysics, 2019, 163, 13-21.	2.1	10
13	Gravity pattern in southeast margin of Tibetan Plateau and its implications to tectonics and large earthquakes. Earth and Planetary Physics, 2019, 3, 425-435.	1.1	9
14	Evidence supporting New Geophysics. Earth and Planetary Physics, 2018, 2, 173-188.	1.1	11
15	Crustal seismic anisotropy and compressive stress in the eastern margin of the Tibetan Plateau and the influence of the <italic< italic="">_S8.0 Wenchuan earthouake. Chinese Science Bulletin. 2018. 63. 1934-1948.</italic<>	0.7	19
16	Lithospheric structure across the northeastern margin of the Tibetan Plateau: Implications for the plateau's lateral growth. Earth and Planetary Science Letters, 2017, 459, 80-92.	4.4	50
17	Rayleigh wave phase velocity tomography and strong earthquake activity on the southeastern front of the Tibetan Plateau. Science China Earth Sciences, 2014, 57, 2532-2542.	5. 2	21
18	Two species of microcracks. Applied Geophysics, 2014, 11, 1-8.	0.6	12

#	Article	IF	Citations
19	The New Geophysics. Terra Nova, 2013, 25, 173-180.	2.1	18
20	Shear-wave splitting beneath Yunnan area of Southwest China. Earthquake Science, 2012, 25, 25-34.	0.9	43
21	Shear-wave splitting in the crust: Regional compressive stress from polarizations of fast shear-waves. Earthquake Science, 2012, 25, 35-45.	0.9	10
22	Shear wave splitting in the crust in North China: stress, faults and tectonic implications. Geophysical Journal International, 2011, 187, 642-654.	2.4	64
23	Crust-mantle coupling in North China: Preliminary analysis from seismic anisotropy. Science Bulletin, 2010, 55, 3599-3605.	1.7	28
24	A review of a quarter century of International Workshops on Seismic Anisotropy in the crust (OIWSA–12IWSA). Journal of Seismology, 2009, 13, 181-208.	1.3	3
25	Crustal seismic anisotropy in Yunnan, Southwestern China. Journal of Seismology, 2009, 13, 287-299.	1.3	13
26	A Study of Seismic Anisotropy of Wenchuan Earthquake Sequence. Chinese Journal of Geophysics, 2009, 52, 138-147.	0.2	7
27	Crustal seismic anisotropy in southeastern Capital area, China. Acta Seismologica Sinica, 2008, 21, 1-10.	0.2	8
28	Shearâ€wave splitting and earthquake forecasting. Terra Nova, 2008, 20, 440-448.	2.1	25
29	Shear wave splitting and mantle flow associated with the deflected Pacific slab beneath northeast Asia. Journal of Geophysical Research, 2008, 113, .	3.3	91
30	A review of techniques for measuring shear-wave splitting above small earthquakes. Physics of the Earth and Planetary Interiors, 2006, 159 , $1-14$.	1.9	52
31	SWAS: A shear-wave analysis system for semi-automatic measurement of shear-wave splitting above small earthquakes. Physics of the Earth and Planetary Interiors, 2006, 159, 71-89.	1.9	20
32	A stress-forecast earthquake (with hindsight), where migration of source earthquakes causes anomalies in shear-wave polarisations. Tectonophysics, 2006, 426, 253-262.	2.2	41
33	Seismic anisotropy of the crust in Yunnan, China: Polarizations of fast shear-waves. Acta Seismologica Sinica, 2006, 19, 620-632.	0.2	14
34	Observations of stress relaxation before earthquakes. Geophysical Journal International, 2004, 157, 578-582.	2.4	95
35	Variational characteristics of shear-wave splitting on the 2001 Shidian earthquakes in Yunnan, China. Acta Seismologica Sinica, 2004, 17, 635-641.	0.2	10
36	Temporal variations of shear-wave splitting in field and laboratory studies in China. Journal of Applied Geophysics, 2003, 54, 279-287.	2.1	32

#	Article	IF	CITATIONS
37	Temporal changes in shear-wave splitting at an isolated swarm of small earthquakes in 1992 near Dongfang, Hainan Island, southern China. Geophysical Journal International, 1998, 135, 102-112.	2.4	80