Carlos M Vicient

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5696936/publications.pdf

Version: 2024-02-01

46 papers

2,083 citations

304368 22 h-index 233125 45 g-index

46 all docs

46 docs citations

times ranked

46

2393 citing authors

#	Article	IF	CITATIONS
1	Retrotransposon BARE-1 and Its Role in Genome Evolution in the Genus Hordeum. Plant Cell, 1999, 11, 1769-1784.	3.1	333
2	Impact of transposable elements on polyploid plant genomes. Annals of Botany, 2017, 120, 195-207.	1.4	228
3	Active Retrotransposons Are a Common Feature of Grass Genomes. Plant Physiology, 2001, 125, 1283-1292.	2.3	188
4	Large Retrotransposon Derivatives: Abundant, Conserved but Nonautonomous Retroelements of Barley and Related Genomes. Genetics, 2004, 166, 1437-1450.	1.2	157
5	Isolation of Total RNA fromArabidopsis thalianaSeeds. Analytical Biochemistry, 1999, 268, 412-413.	1.1	112
6	Ankyrin repeat-containing proteins in Arabidopsis: characterization of a novel and abundant group of genes coding ankyrin-transmembrane proteins. Gene, 2004, 340, 111-121.	1.0	101
7	Transcriptional activity of transposable elements in maize. BMC Genomics, 2010, 11, 601.	1.2	90
8	Envelope-Class Retrovirus-Like Elements Are Widespread, Transcribed and Spliced, and Insertionally Polymorphic in Plants. Genome Research, 2001, 11, 2041-2049.	2.4	86
9	Variability, Recombination, and Mosaic Evolution of the Barley BARE-1 Retrotransposon. Journal of Molecular Evolution, 2005, 61, 275-291.	0.8	62
10	Retrotransposon BARE-1: expression of encoded proteins and formation of virus-like particles in barley cells. Plant Journal, 1999, 20, 413-422.	2.8	55
11	Changes in gene expression in the leafy cotyledon1 (lec1) and fusca3 (fus3) mutants of Arabidopsis thaliana L Journal of Experimental Botany, 2000, 51, 995-1003.	2.4	53
12	Late Embryogenesis Abundant (LEA) protein gene regulation during Arabidopsis seed maturation. Journal of Plant Physiology, 2001, 158, 419-427.	1.6	51
13	Differential expression of the Arabidopsis genes coding for Emâ€like proteins1. Journal of Experimental Botany, 2000, 51, 1211-1220.	2.4	49
14	Life without GAG: The BARE-2 retrotransposon as a parasite's parasite. Gene, 2007, 390, 166-174.	1.0	48
15	Structure, functionality, and evolution of the BARE-1 retrotransposon of barley. Genetica, 1999, 107, 53-63.	0.5	43
16	The Evolutionary Conserved Oil Body Associated Protein OBAP1 Participates in the Regulation of Oil Body Size Â. Plant Physiology, 2014, 164, 1237-1249.	2.3	42
17	Drought tolerance induced by sound in Arabidopsis plants. Plant Signaling and Behavior, 2017, 12, e1368938.	1.2	36
18	Use of ultrasonication to increase germination rates of Arabidopsis seeds. Plant Methods, 2017, 13, 31.	1.9	36

#	Article	IF	CITATIONS
19	Computational and experimental analysis identifies Arabidopsis genes specifically expressed during early seed development. BMC Genomics, 2006, 7, 38.	1.2	28
20	What makes Grande1 retrotransposon different?. Genetica, 1997, 100, 15-28.	0.5	27
21	Copia-Like Retrotransposons in the Rice Genome: Few and Assorted. Journal of Genome Science and Technology, 2002, 1, 35-47.	0.7	23
22	Protein composition analysis of oil bodies from maize embryos during germination. Journal of Plant Physiology, 2011, 168, 510-513.	1.6	22
23	Stability of the MON 810 transgene in maize. Plant Molecular Biology, 2010, 74, 563-571.	2.0	20
24	Additional ORFs in Plant LTR-Retrotransposons. Frontiers in Plant Science, 2020, 11, 555.	1.7	18
25	What makes Grande1 retrotransposon different?. Contemporary Issues in Genetics and Evolution, 1997, , 15-28.	0.9	17
26	Molecular Analysis of a Putative Transposable Retroelement from the Zea Genus with Internal Clusters of Tandem Repeats. DNA Research, 1995, 2, 255-261.	1.5	16
27	Transcriptomic and proteomic profiling of maize embryos exposed to camptothecin. BMC Plant Biology, 2011, 11, 91.	1.6	14
28	Maize Embryogenesis. Methods in Molecular Biology, 2008, 427, 17-29.	0.4	13
29	Integrase diversity and transcription of the maize retrotransposon Grande. Genome, 2006, 49, 558-562.	0.9	12
30	Identification of a type I Ca2+/Mg2+-dependent endonuclease induced in maize cells exposed to camptothecin. BMC Plant Biology, 2013, 13, 186.	1.6	11
31	ZmPTR1, a maize peptide transporter expressed in the epithelial cells of the scutellum during germination. Plant Science, 2013, 207, 140-147.	1.7	10
32	Genetic diversity of maize germplasm assessed by retrotransposonâ€based markers. Electrophoresis, 2014, 35, 1921-1927.	1.3	10
33	Discovery of a Zdel transposable element in Zea species as a consequence of a retrotransposon insertion. Gene, 1997, 184, 257-261.	1.0	8
34	Quantitative subproteomic analysis of germinating related changes in the scutellum oil bodies of Zea mays. Plant Science, 2012, 191-192, 1-7.	1.7	8
35	The Use of Massive Sequencing to Detect Differences between Immature Embryos of MON810 and a Comparable Non-GM Maize Variety. PLoS ONE, 2014, 9, e100895.	1.1	8
36	The effect of frequency-specific sound signals on the germination of maize seeds. BMC Research Notes, 2017, 10, 323.	0.6	8

#	Article	IF	CITATIONS
37	The Arabidopsis AtEm1 promoter is active in Brassica napus L. and is temporally and spatially regulated. Journal of Experimental Botany, 2001, 52, 1587-1591.	2.4	7
38	Characterization of polyadenylated crylA(b) transcripts in maize MON810 commercial varieties. Analytical and Bioanalytical Chemistry, 2010, 396, 2125-2133.	1.9	7
39	Grande retrotransposons contain an accessory gene in the unusually long $3\hat{a}\in^2$ -internal region that encodes a nuclear protein transcribed from its own promoter. Plant Molecular Biology, 2013, 81, 541-551.	2.0	7
40	A maize defective-kernel mutant (longcell) characterized by tubular cells, severe morphological alterations and induction of cell death. Planta, 2006, 223, 755-768.	1.6	6
41	Retrotransposon BARE-1 and Its Role in Genome Evolution in the Genus Hordeum. Plant Cell, 1999, 11, 1769.	3.1	4
42	Gene note. Characterization of an Em-like gene of Brassica napus. Journal of Experimental Botany, 1998, 49, 1061-1062.	2.4	4
43	Expression profile of maize (Zea mays) scutellar epithelium during imbibition. Journal of Plant Physiology, 2012, 169, 1430-1433.	1.6	3
44	MASISH: a database for gene expression in maize seeds. Bioinformatics, 2011, 27, 435-436.	1.8	1
45	Genetic, molecular and cellular approaches to the analysis of maize embryo development. International Journal of Developmental Biology, 2009, 53, 1649-1654.	0.3	1
46	Structure, functionality, and evolution of the BARE-1 retrotransposon of barley., 2000, , 53-63.		0